Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import spaces | |
| os.environ['LOWRES_RESIZE'] = '384x32' | |
| os.environ['HIGHRES_BASE'] = '0x32' | |
| os.environ['VIDEO_RESIZE'] = "0x64" | |
| os.environ['VIDEO_MAXRES'] = "480" | |
| os.environ['VIDEO_MINRES'] = "288" | |
| os.environ['MAXRES'] = '1536' | |
| os.environ['MINRES'] = '0' | |
| os.environ['REGIONAL_POOL'] = '2x' | |
| os.environ['FORCE_NO_DOWNSAMPLE'] = '1' | |
| os.environ['LOAD_VISION_EARLY'] = '1' | |
| os.environ['SKIP_LOAD_VIT'] = '1' | |
| # os.environ["CUDA_LAUNCH_BLOCKING"]='1' | |
| import gradio as gr | |
| import torch | |
| print(torch.cuda.is_available()) | |
| import re | |
| from decord import VideoReader, cpu | |
| from PIL import Image | |
| import numpy as np | |
| import transformers | |
| import moviepy.editor as mp | |
| from typing import Dict, Optional, Sequence, List | |
| import librosa | |
| import whisper | |
| import torchaudio | |
| import subprocess | |
| def install_cuda_toolkit(): | |
| # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run" | |
| CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run" | |
| CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) | |
| subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) | |
| subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE]) | |
| subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) | |
| os.environ["CUDA_HOME"] = "/usr/local/cuda" | |
| os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"]) | |
| os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % ( | |
| os.environ["CUDA_HOME"], | |
| "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"], | |
| ) | |
| # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range | |
| os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6" | |
| install_cuda_toolkit() | |
| subprocess.run('pip install flash-attn==2.5.9.post1 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "True"}, shell=True) | |
| import sys | |
| sys.path.append('./ola/CosyVoice_main/') | |
| from ola.conversation import conv_templates, SeparatorStyle | |
| from ola.model.builder import load_pretrained_model | |
| from ola.utils import disable_torch_init | |
| from ola.datasets.preprocess import tokenizer_image_token, tokenizer_speech_image_token, tokenizer_speech_question_image_token | |
| from ola.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, process_anyres_video, process_anyres_highres_image_genli | |
| from ola.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, DEFAULT_SPEECH_TOKEN | |
| # from ola.CosyVoice_main.cosyvoice.cli.cosyvoice import CosyVoice | |
| from huggingface_hub import hf_hub_download | |
| whisper_path = hf_hub_download( | |
| repo_id="THUdyh/Ola-7b", | |
| filename="large-v3.pt", | |
| local_dir="./" | |
| ) | |
| beats_path = hf_hub_download( | |
| repo_id="THUdyh/Ola-7b", | |
| filename="BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt", | |
| local_dir="./" | |
| ) | |
| model_path = "THUdyh/Ola-7b" | |
| tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None) | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| model = model.to(device).eval() | |
| model = model.bfloat16() | |
| # tts_model = CosyVoice('iic/CosyVoice-300M-SFT', load_jit=False, fp16=True) | |
| # tts_model = CosyVoice('FunAudioLLM/CosyVoice-300M-SFT', load_jit=True, fp16=True) | |
| OUTPUT_SPEECH=False | |
| USE_SPEECH=False | |
| title_markdown = """ | |
| <div style="display: flex; justify-content: left; align-items: center; text-align: left; background: linear-gradient(45deg, rgba(255,248,240, 0.8), rgba(255,135,36,0.3)); border-radius: 10px; box-shadow: 0 8px 16px 0 rgba(0,0,0,0.1);"> <a href="https://ola-omni.github.io/"" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;"> | |
| <img src="https://ola-omni.github.io/static/images/ola-icon-2.png" alt="Ola" style="max-width: 80px; height: auto; border-radius: 10px;"> | |
| </a> | |
| <div> | |
| <h2 ><a href="https://github.com/Ola-Omni/Ola">Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment</a> </h2> | |
| <h5 style="margin: 0;"><a href="https://ola-omni.github.io/">Project Page</a> | <a href="https://github.com/Ola-Omni/Ola">Github</a> | <a href="https://huggingface.co/THUdyh/Ola-7b">Huggingface</a> | <a href="https://arxiv.org/abs/2502.04328">Paper</a> </h5> | |
| </div> | |
| </div> | |
| """ | |
| bibtext = """ | |
| ### Citation | |
| ``` | |
| @article{liu2025ola, | |
| title={Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment}, | |
| author={Liu, Zuyan and Dong, Yuhao and Wang, Jiahui and Liu, Ziwei and Hu, Winston and Lu, Jiwen and Rao, Yongming}, | |
| journal={arXiv preprint arXiv:2502.04328}, | |
| year={2025} | |
| } | |
| ``` | |
| """ | |
| cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
| def load_audio(audio_file_name): | |
| speech_wav, samplerate = librosa.load(audio_file_name, sr=16000) | |
| if len(speech_wav.shape) > 1: | |
| speech_wav = speech_wav[:, 0] | |
| speech_wav = speech_wav.astype(np.float32) | |
| CHUNK_LIM = 480000 | |
| SAMPLE_RATE = 16000 | |
| speechs = [] | |
| speech_wavs = [] | |
| if len(speech_wav) <= CHUNK_LIM: | |
| speech = whisper.pad_or_trim(speech_wav) | |
| speech_wav = whisper.pad_or_trim(speech_wav) | |
| speechs.append(speech) | |
| speech_wavs.append(torch.from_numpy(speech_wav).unsqueeze(0)) | |
| else: | |
| for i in range(0, len(speech_wav), CHUNK_LIM): | |
| chunk = speech_wav[i : i + CHUNK_LIM] | |
| if len(chunk) < CHUNK_LIM: | |
| chunk = whisper.pad_or_trim(chunk) | |
| speechs.append(chunk) | |
| speech_wavs.append(torch.from_numpy(chunk).unsqueeze(0)) | |
| mels = [] | |
| for chunk in speechs: | |
| chunk = whisper.log_mel_spectrogram(chunk, n_mels=128).permute(1, 0).unsqueeze(0) | |
| mels.append(chunk) | |
| mels = torch.cat(mels, dim=0) | |
| speech_wavs = torch.cat(speech_wavs, dim=0) | |
| if mels.shape[0] > 25: | |
| mels = mels[:25] | |
| speech_wavs = speech_wavs[:25] | |
| speech_length = torch.LongTensor([mels.shape[1]] * mels.shape[0]) | |
| speech_chunks = torch.LongTensor([mels.shape[0]]) | |
| return mels, speech_length, speech_chunks, speech_wavs | |
| def extract_audio(videos_file_path): | |
| my_clip = mp.VideoFileClip(videos_file_path) | |
| return my_clip.audio | |
| def ola_inference(multimodal, audio_path): | |
| try: | |
| visual = multimodal["files"][0] | |
| except: | |
| visual = None | |
| text = multimodal["text"] | |
| if visual and visual.endswith("image2.png"): | |
| modality = "video" | |
| visual = f"{cur_dir}/case/case1.mp4" | |
| if visual and visual.endswith(".mp4"): | |
| modality = "video" | |
| elif visual: | |
| modality = "image" | |
| elif audio_path is not None: | |
| modality = "text" | |
| # input audio and video, do not parse audio in the video, else parse audio in the video | |
| if audio_path: | |
| USE_SPEECH = True | |
| elif modality == "video": | |
| USE_SPEECH = True | |
| else: | |
| USE_SPEECH = False | |
| speechs = [] | |
| speech_lengths = [] | |
| speech_wavs = [] | |
| speech_chunks = [] | |
| if modality == "video": | |
| vr = VideoReader(visual, ctx=cpu(0)) | |
| total_frame_num = len(vr) | |
| fps = round(vr.get_avg_fps()) | |
| uniform_sampled_frames = np.linspace(0, total_frame_num - 1, 64, dtype=int) | |
| frame_idx = uniform_sampled_frames.tolist() | |
| spare_frames = vr.get_batch(frame_idx).asnumpy() | |
| video = [Image.fromarray(frame) for frame in spare_frames] | |
| elif modality == "image": | |
| image = [Image.open(visual)] | |
| image_sizes = [image[0].size] | |
| else: | |
| images = [torch.zeros(1, 3, 224, 224).to(dtype=torch.bfloat16, device='cuda', non_blocking=True)] | |
| images_highres = [torch.zeros(1, 3, 224, 224).to(dtype=torch.bfloat16, device='cuda', non_blocking=True)] | |
| image_sizes = [(224, 224)] | |
| if USE_SPEECH and audio_path: | |
| audio_path = audio_path | |
| speech, speech_length, speech_chunk, speech_wav = load_audio(audio_path) | |
| speechs.append(speech.bfloat16().to(device)) | |
| speech_lengths.append(speech_length.to(device)) | |
| speech_chunks.append(speech_chunk.to(device)) | |
| speech_wavs.append(speech_wav.to(device)) | |
| print('load audio') | |
| elif USE_SPEECH and not audio_path: | |
| # parse audio in the video | |
| audio = extract_audio(visual) | |
| audio.write_audiofile("./video_audio.wav") | |
| video_audio_path = './video_audio.wav' | |
| speech, speech_length, speech_chunk, speech_wav = load_audio(video_audio_path) | |
| speechs.append(speech.bfloat16().to(device)) | |
| speech_lengths.append(speech_length.to(device)) | |
| speech_chunks.append(speech_chunk.to(device)) | |
| speech_wavs.append(speech_wav.to(device)) | |
| else: | |
| speechs = [torch.zeros(1, 3000, 128).bfloat16().to(device)] | |
| speech_lengths = [torch.LongTensor([3000]).to(device)] | |
| speech_wavs = [torch.zeros([1, 480000]).to(device)] | |
| speech_chunks = [torch.LongTensor([1]).to(device)] | |
| conv_mode = "qwen_1_5" | |
| if text: | |
| qs = text | |
| else: | |
| qs = '' | |
| if USE_SPEECH and audio_path and modality == "image": | |
| if text: | |
| return "ERROR: Please provide either text or audio question for image, not both.", None | |
| qs = DEFAULT_IMAGE_TOKEN + "\n" + "User's question in speech: " + DEFAULT_SPEECH_TOKEN + '\n' | |
| elif USE_SPEECH and modality == "video": | |
| qs = DEFAULT_SPEECH_TOKEN + DEFAULT_IMAGE_TOKEN + "\n" + qs | |
| elif USE_SPEECH and audio_path: # audio + text | |
| qs = DEFAULT_SPEECH_TOKEN + "\n" + qs | |
| elif modality == "video" or modality == "image": | |
| qs = DEFAULT_IMAGE_TOKEN + "\n" + qs | |
| elif text: # text | |
| qs = qs | |
| conv = conv_templates[conv_mode].copy() | |
| conv.append_message(conv.roles[0], qs) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| if USE_SPEECH and audio_path: | |
| input_ids = tokenizer_speech_question_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) | |
| elif USE_SPEECH: | |
| input_ids = tokenizer_speech_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) | |
| else: | |
| input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) | |
| if modality == "video": | |
| video_processed = [] | |
| for idx, frame in enumerate(video): | |
| image_processor.do_resize = False | |
| image_processor.do_center_crop = False | |
| frame = process_anyres_video(frame, image_processor) | |
| if frame_idx is not None and idx in frame_idx: | |
| video_processed.append(frame.unsqueeze(0)) | |
| elif frame_idx is None: | |
| video_processed.append(frame.unsqueeze(0)) | |
| if frame_idx is None: | |
| frame_idx = np.arange(0, len(video_processed), dtype=int).tolist() | |
| video_processed = torch.cat(video_processed, dim=0).bfloat16().to("cuda") | |
| video_processed = (video_processed, video_processed) | |
| video_data = (video_processed, (384, 384), "video") | |
| elif modality == "image": | |
| image_processor.do_resize = False | |
| image_processor.do_center_crop = False | |
| image_tensor, image_highres_tensor = [], [] | |
| for visual in image: | |
| image_tensor_, image_highres_tensor_ = process_anyres_highres_image_genli(visual, image_processor) | |
| image_tensor.append(image_tensor_) | |
| image_highres_tensor.append(image_highres_tensor_) | |
| if all(x.shape == image_tensor[0].shape for x in image_tensor): | |
| image_tensor = torch.stack(image_tensor, dim=0) | |
| if all(x.shape == image_highres_tensor[0].shape for x in image_highres_tensor): | |
| image_highres_tensor = torch.stack(image_highres_tensor, dim=0) | |
| if type(image_tensor) is list: | |
| image_tensor = [_image.bfloat16().to("cuda") for _image in image_tensor] | |
| else: | |
| image_tensor = image_tensor.bfloat16().to("cuda") | |
| if type(image_highres_tensor) is list: | |
| image_highres_tensor = [_image.bfloat16().to("cuda") for _image in image_highres_tensor] | |
| else: | |
| image_highres_tensor = image_highres_tensor.bfloat16().to("cuda") | |
| pad_token_ids = 151643 | |
| attention_masks = input_ids.ne(pad_token_ids).long().to(device) | |
| stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
| keywords = [stop_str] | |
| stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
| gen_kwargs = {} | |
| if "max_new_tokens" not in gen_kwargs: | |
| gen_kwargs["max_new_tokens"] = 1024 | |
| if "temperature" not in gen_kwargs: | |
| gen_kwargs["temperature"] = 0.2 | |
| if "top_p" not in gen_kwargs: | |
| gen_kwargs["top_p"] = None | |
| if "num_beams" not in gen_kwargs: | |
| gen_kwargs["num_beams"] = 1 | |
| with torch.inference_mode(): | |
| if modality == "video": | |
| output_ids = model.generate( | |
| inputs=input_ids, | |
| images=video_data[0][0], | |
| images_highres=video_data[0][1], | |
| modalities=video_data[2], | |
| speech=speechs, | |
| speech_lengths=speech_lengths, | |
| speech_chunks=speech_chunks, | |
| speech_wav=speech_wavs, | |
| attention_mask=attention_masks, | |
| use_cache=True, | |
| stopping_criteria=[stopping_criteria], | |
| do_sample=True if gen_kwargs["temperature"] > 0 else False, | |
| temperature=gen_kwargs["temperature"], | |
| top_p=gen_kwargs["top_p"], | |
| num_beams=gen_kwargs["num_beams"], | |
| max_new_tokens=gen_kwargs["max_new_tokens"], | |
| ) | |
| elif modality == "image": | |
| output_ids = model.generate( | |
| inputs=input_ids, | |
| images=image_tensor, | |
| images_highres=image_highres_tensor, | |
| image_sizes=image_sizes, | |
| modalities=['image'], | |
| speech=speechs, | |
| speech_lengths=speech_lengths, | |
| speech_chunks=speech_chunks, | |
| speech_wav=speech_wavs, | |
| attention_mask=attention_masks, | |
| use_cache=True, | |
| stopping_criteria=[stopping_criteria], | |
| do_sample=True if gen_kwargs["temperature"] > 0 else False, | |
| temperature=gen_kwargs["temperature"], | |
| top_p=gen_kwargs["top_p"], | |
| num_beams=gen_kwargs["num_beams"], | |
| max_new_tokens=gen_kwargs["max_new_tokens"], | |
| ) | |
| elif modality == "text": | |
| output_ids = model.generate( | |
| input_ids, | |
| images=images, | |
| images_highres=images_highres, | |
| image_sizes=image_sizes, | |
| modalities=['text'], | |
| speech=speechs, | |
| speech_lengths=speech_lengths, | |
| speech_chunks=speech_chunks, | |
| speech_wav=speech_wavs, | |
| attention_mask=attention_masks, | |
| use_cache=True, | |
| stopping_criteria=[stopping_criteria], | |
| do_sample=True if gen_kwargs["temperature"] > 0 else False, | |
| temperature=gen_kwargs["temperature"], | |
| top_p=gen_kwargs["top_p"], | |
| num_beams=gen_kwargs["num_beams"], | |
| max_new_tokens=gen_kwargs["max_new_tokens"], | |
| ) | |
| outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] | |
| outputs = outputs.strip() | |
| if outputs.endswith(stop_str): | |
| outputs = outputs[:-len(stop_str)] | |
| outputs = outputs.strip() | |
| if OUTPUT_SPEECH: | |
| voice_all = [] | |
| for i, j in enumerate(tts_model.inference_sft(outputs, '英文女', stream=False)): | |
| voice_all.append(j['tts_speech']) | |
| voice_all = torch.cat(voice_all, dim=1) | |
| torchaudio.save('sft.wav', voice_all, 22050) | |
| return outputs, "sft.wav" | |
| # else: | |
| return outputs, None | |
| # Define input and output for the Gradio interface | |
| demo = gr.Interface( | |
| fn=ola_inference, | |
| inputs=[gr.MultimodalTextbox(file_types=[".mp4", "image"],placeholder="Enter message or upload files...(Image or Video is required)"), gr.Audio(type="filepath")], | |
| outputs=["text", "audio"], | |
| title="Ola Demo", | |
| description=title_markdown, | |
| article=bibtext, | |
| ) | |
| # Launch the Gradio app | |
| demo.launch() | |