Spaces:
Running
Running
minor fix
Browse files- app.py +96 -94
- {Archive β archive}/BGE-VL-v1.5-mmeb.json +0 -0
- {Archive β archive}/BGE-VL-v1.5-zs.json +0 -0
- {Archive β archive}/LLaVE.json +0 -0
- {Archive β archive}/UNITE_MMEB_results.json +0 -0
- {Archive β archive}/UniME_results.json +0 -0
- {Archive β archive}/meta-score-BGE-VL-v1.5-mmeb.json +0 -0
- {Archive β archive}/meta-score-BGE-VL-v1.5-zs.json +0 -0
- {Archive β archive}/mmE5_mmeb.json +0 -0
- {Archive β archive}/mmeb-qqmm.json +0 -0
- {Archive β archive}/submission_CAFe.json +0 -0
- {Scores β scores}/LamRA-Ret-Qwen2.5VL-7b.json +0 -0
- {Scores β scores}/LamRA-Ret.json +0 -0
- {Scores β scores}/VLM2Vec-Qwen2-VL-V2.0-scores_report.json +0 -0
- {Scores β scores}/VLM2Vec-Qwen2-VL-V2.1-scores_report.json +0 -0
- {Scores β scores}/VLM2Vec-V1-Qwen2VL-2B.json +0 -0
- {Scores β scores}/VLM2Vec-V1-Qwen2VL-7B.json +0 -0
- {Scores β scores}/VLM2Vec-V2.0-Qwen2VL-2B.json +0 -0
- {Scores β scores}/colpali-v1.3.json +0 -0
- {Scores β scores}/gme-Qwen2-VL-2B-Instruct.json +0 -0
- {Scores β scores}/gme-Qwen2-VL-7B-Instruct.json +0 -0
- utils.py +1 -1
- utils_v2.py +4 -4
app.py
CHANGED
|
@@ -24,89 +24,7 @@ with gr.Blocks() as block:
|
|
| 24 |
|
| 25 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 26 |
# Table 1
|
| 27 |
-
with gr.TabItem("π MMEB (
|
| 28 |
-
with gr.Row():
|
| 29 |
-
with gr.Accordion("Citation", open=False):
|
| 30 |
-
citation_button = gr.Textbox(
|
| 31 |
-
value=CITATION_BUTTON_TEXT,
|
| 32 |
-
label=CITATION_BUTTON_LABEL,
|
| 33 |
-
elem_id="citation-button",
|
| 34 |
-
lines=10,
|
| 35 |
-
)
|
| 36 |
-
gr.Markdown(TABLE_INTRODUCTION)
|
| 37 |
-
|
| 38 |
-
with gr.Row():
|
| 39 |
-
search_bar = gr.Textbox(
|
| 40 |
-
placeholder="Search models...",
|
| 41 |
-
show_label=False,
|
| 42 |
-
elem_id="search-bar"
|
| 43 |
-
)
|
| 44 |
-
|
| 45 |
-
df = get_df()
|
| 46 |
-
min_size, max_size = get_size_range(df)
|
| 47 |
-
|
| 48 |
-
with gr.Row():
|
| 49 |
-
min_size_slider = gr.Slider(
|
| 50 |
-
minimum=min_size,
|
| 51 |
-
maximum=max_size,
|
| 52 |
-
value=min_size,
|
| 53 |
-
step=0.1,
|
| 54 |
-
label="Minimum number of parameters (B)",
|
| 55 |
-
)
|
| 56 |
-
max_size_slider = gr.Slider(
|
| 57 |
-
minimum=min_size,
|
| 58 |
-
maximum=max_size,
|
| 59 |
-
value=max_size,
|
| 60 |
-
step=0.1,
|
| 61 |
-
label="Maximum number of parameters (B)",
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
with gr.Row():
|
| 65 |
-
tasks_select = gr.CheckboxGroup(
|
| 66 |
-
choices=TASKS_V1,
|
| 67 |
-
value=TASKS_V1,
|
| 68 |
-
label="Select tasks to Display",
|
| 69 |
-
elem_id="tasks-select"
|
| 70 |
-
)
|
| 71 |
-
|
| 72 |
-
data_component = gr.components.Dataframe(
|
| 73 |
-
value=df[COLUMN_NAMES],
|
| 74 |
-
headers=COLUMN_NAMES,
|
| 75 |
-
type="pandas",
|
| 76 |
-
datatype=DATA_TITLE_TYPE,
|
| 77 |
-
interactive=False,
|
| 78 |
-
visible=True,
|
| 79 |
-
max_height=2400,
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
refresh_button = gr.Button("Refresh")
|
| 83 |
-
|
| 84 |
-
def update_with_tasks(*args):
|
| 85 |
-
return update_table(*args)
|
| 86 |
-
|
| 87 |
-
search_bar.change(
|
| 88 |
-
fn=update_with_tasks,
|
| 89 |
-
inputs=[search_bar, min_size_slider, max_size_slider, tasks_select],
|
| 90 |
-
outputs=data_component
|
| 91 |
-
)
|
| 92 |
-
min_size_slider.change(
|
| 93 |
-
fn=update_with_tasks,
|
| 94 |
-
inputs=[search_bar, min_size_slider, max_size_slider, tasks_select],
|
| 95 |
-
outputs=data_component
|
| 96 |
-
)
|
| 97 |
-
max_size_slider.change(
|
| 98 |
-
fn=update_with_tasks,
|
| 99 |
-
inputs=[search_bar, min_size_slider, max_size_slider, tasks_select],
|
| 100 |
-
outputs=data_component
|
| 101 |
-
)
|
| 102 |
-
tasks_select.change(
|
| 103 |
-
fn=update_with_tasks,
|
| 104 |
-
inputs=[search_bar, min_size_slider, max_size_slider, tasks_select],
|
| 105 |
-
outputs=data_component
|
| 106 |
-
)
|
| 107 |
-
refresh_button.click(fn=refresh_data, outputs=data_component)
|
| 108 |
-
|
| 109 |
-
with gr.TabItem("π **MMEB (V2)**", elem_id="qa-tab-table1", id=2):
|
| 110 |
with gr.Row():
|
| 111 |
with gr.Accordion("Citation", open=False):
|
| 112 |
citation_button2 = gr.Textbox(
|
|
@@ -186,10 +104,10 @@ with gr.Blocks() as block:
|
|
| 186 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
| 187 |
outputs=data_component2
|
| 188 |
)
|
| 189 |
-
|
| 190 |
|
| 191 |
-
# table
|
| 192 |
-
with gr.TabItem("πΌοΈ Image", elem_id="qa-tab-table1", id=
|
| 193 |
data_component3 = gr.components.Dataframe(
|
| 194 |
value=df2[v2.COLUMN_NAMES_I],
|
| 195 |
headers=v2.COLUMN_NAMES_I,
|
|
@@ -200,8 +118,8 @@ with gr.Blocks() as block:
|
|
| 200 |
max_height=2400,
|
| 201 |
)
|
| 202 |
|
| 203 |
-
# table
|
| 204 |
-
with gr.TabItem("π½ Video", elem_id="qa-tab-table1", id=
|
| 205 |
data_component4 = gr.components.Dataframe(
|
| 206 |
value=df2[v2.COLUMN_NAMES_V],
|
| 207 |
headers=v2.COLUMN_NAMES_V,
|
|
@@ -212,8 +130,8 @@ with gr.Blocks() as block:
|
|
| 212 |
max_height=2400,
|
| 213 |
)
|
| 214 |
|
| 215 |
-
# table
|
| 216 |
-
with gr.TabItem("π Visual Doc", elem_id="qa-tab-table1", id=
|
| 217 |
data_component5 = gr.components.Dataframe(
|
| 218 |
value=df2[v2.COLUMN_NAMES_D],
|
| 219 |
headers=v2.COLUMN_NAMES_D,
|
|
@@ -224,14 +142,98 @@ with gr.Blocks() as block:
|
|
| 224 |
max_height=2400,
|
| 225 |
)
|
| 226 |
|
| 227 |
-
# table
|
| 228 |
-
with gr.TabItem("π About", elem_id="qa-tab-table2", id=
|
| 229 |
gr.Markdown(LEADERBOARD_INFO, elem_classes="markdown-text")
|
| 230 |
gr.Image("overview.png", width=900, label="Dataset Overview")
|
| 231 |
|
| 232 |
-
# table
|
| 233 |
-
with gr.TabItem("π Submit here! ", elem_id="submit-tab", id=
|
| 234 |
with gr.Row():
|
| 235 |
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
|
| 236 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
block.launch(share=True)
|
|
|
|
| 24 |
|
| 25 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 26 |
# Table 1
|
| 27 |
+
with gr.TabItem("π MMEB (V2)", elem_id="qa-tab-table1", id=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
with gr.Row():
|
| 29 |
with gr.Accordion("Citation", open=False):
|
| 30 |
citation_button2 = gr.Textbox(
|
|
|
|
| 104 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
| 105 |
outputs=data_component2
|
| 106 |
)
|
| 107 |
+
refresh_button2.click(fn=v2.refresh_data, outputs=data_component2)
|
| 108 |
|
| 109 |
+
# table 2
|
| 110 |
+
with gr.TabItem("πΌοΈ Image", elem_id="qa-tab-table1", id=2):
|
| 111 |
data_component3 = gr.components.Dataframe(
|
| 112 |
value=df2[v2.COLUMN_NAMES_I],
|
| 113 |
headers=v2.COLUMN_NAMES_I,
|
|
|
|
| 118 |
max_height=2400,
|
| 119 |
)
|
| 120 |
|
| 121 |
+
# table 3
|
| 122 |
+
with gr.TabItem("π½ Video", elem_id="qa-tab-table1", id=3):
|
| 123 |
data_component4 = gr.components.Dataframe(
|
| 124 |
value=df2[v2.COLUMN_NAMES_V],
|
| 125 |
headers=v2.COLUMN_NAMES_V,
|
|
|
|
| 130 |
max_height=2400,
|
| 131 |
)
|
| 132 |
|
| 133 |
+
# table 4
|
| 134 |
+
with gr.TabItem("π Visual Doc", elem_id="qa-tab-table1", id=4):
|
| 135 |
data_component5 = gr.components.Dataframe(
|
| 136 |
value=df2[v2.COLUMN_NAMES_D],
|
| 137 |
headers=v2.COLUMN_NAMES_D,
|
|
|
|
| 142 |
max_height=2400,
|
| 143 |
)
|
| 144 |
|
| 145 |
+
# table 5
|
| 146 |
+
with gr.TabItem("π About", elem_id="qa-tab-table2", id=5):
|
| 147 |
gr.Markdown(LEADERBOARD_INFO, elem_classes="markdown-text")
|
| 148 |
gr.Image("overview.png", width=900, label="Dataset Overview")
|
| 149 |
|
| 150 |
+
# table 6
|
| 151 |
+
with gr.TabItem("π Submit here! ", elem_id="submit-tab", id=6):
|
| 152 |
with gr.Row():
|
| 153 |
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
|
| 154 |
|
| 155 |
+
# table 7
|
| 156 |
+
with gr.TabItem("π MMEB (Archived)", elem_id="qa-tab-table1", id=7):
|
| 157 |
+
with gr.Row():
|
| 158 |
+
with gr.Accordion("Citation", open=False):
|
| 159 |
+
citation_button = gr.Textbox(
|
| 160 |
+
value=CITATION_BUTTON_TEXT,
|
| 161 |
+
label=CITATION_BUTTON_LABEL,
|
| 162 |
+
elem_id="citation-button",
|
| 163 |
+
lines=10,
|
| 164 |
+
)
|
| 165 |
+
gr.Markdown(TABLE_INTRODUCTION)
|
| 166 |
+
|
| 167 |
+
with gr.Row():
|
| 168 |
+
search_bar = gr.Textbox(
|
| 169 |
+
placeholder="Search models...",
|
| 170 |
+
show_label=False,
|
| 171 |
+
elem_id="search-bar"
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
df = get_df()
|
| 175 |
+
min_size, max_size = get_size_range(df)
|
| 176 |
+
|
| 177 |
+
with gr.Row():
|
| 178 |
+
min_size_slider = gr.Slider(
|
| 179 |
+
minimum=min_size,
|
| 180 |
+
maximum=max_size,
|
| 181 |
+
value=min_size,
|
| 182 |
+
step=0.1,
|
| 183 |
+
label="Minimum number of parameters (B)",
|
| 184 |
+
)
|
| 185 |
+
max_size_slider = gr.Slider(
|
| 186 |
+
minimum=min_size,
|
| 187 |
+
maximum=max_size,
|
| 188 |
+
value=max_size,
|
| 189 |
+
step=0.1,
|
| 190 |
+
label="Maximum number of parameters (B)",
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
with gr.Row():
|
| 194 |
+
tasks_select = gr.CheckboxGroup(
|
| 195 |
+
choices=TASKS_V1,
|
| 196 |
+
value=TASKS_V1,
|
| 197 |
+
label="Select tasks to Display",
|
| 198 |
+
elem_id="tasks-select"
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
data_component = gr.components.Dataframe(
|
| 202 |
+
value=df[COLUMN_NAMES],
|
| 203 |
+
headers=COLUMN_NAMES,
|
| 204 |
+
type="pandas",
|
| 205 |
+
datatype=DATA_TITLE_TYPE,
|
| 206 |
+
interactive=False,
|
| 207 |
+
visible=True,
|
| 208 |
+
max_height=2400,
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
refresh_button = gr.Button("Refresh")
|
| 212 |
+
|
| 213 |
+
def update_with_tasks(*args):
|
| 214 |
+
return update_table(*args)
|
| 215 |
+
|
| 216 |
+
search_bar.change(
|
| 217 |
+
fn=update_with_tasks,
|
| 218 |
+
inputs=[search_bar, min_size_slider, max_size_slider, tasks_select],
|
| 219 |
+
outputs=data_component
|
| 220 |
+
)
|
| 221 |
+
min_size_slider.change(
|
| 222 |
+
fn=update_with_tasks,
|
| 223 |
+
inputs=[search_bar, min_size_slider, max_size_slider, tasks_select],
|
| 224 |
+
outputs=data_component
|
| 225 |
+
)
|
| 226 |
+
max_size_slider.change(
|
| 227 |
+
fn=update_with_tasks,
|
| 228 |
+
inputs=[search_bar, min_size_slider, max_size_slider, tasks_select],
|
| 229 |
+
outputs=data_component
|
| 230 |
+
)
|
| 231 |
+
tasks_select.change(
|
| 232 |
+
fn=update_with_tasks,
|
| 233 |
+
inputs=[search_bar, min_size_slider, max_size_slider, tasks_select],
|
| 234 |
+
outputs=data_component
|
| 235 |
+
)
|
| 236 |
+
refresh_button.click(fn=refresh_data, outputs=data_component)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
block.launch(share=True)
|
{Archive β archive}/BGE-VL-v1.5-mmeb.json
RENAMED
|
File without changes
|
{Archive β archive}/BGE-VL-v1.5-zs.json
RENAMED
|
File without changes
|
{Archive β archive}/LLaVE.json
RENAMED
|
File without changes
|
{Archive β archive}/UNITE_MMEB_results.json
RENAMED
|
File without changes
|
{Archive β archive}/UniME_results.json
RENAMED
|
File without changes
|
{Archive β archive}/meta-score-BGE-VL-v1.5-mmeb.json
RENAMED
|
File without changes
|
{Archive β archive}/meta-score-BGE-VL-v1.5-zs.json
RENAMED
|
File without changes
|
{Archive β archive}/mmE5_mmeb.json
RENAMED
|
File without changes
|
{Archive β archive}/mmeb-qqmm.json
RENAMED
|
File without changes
|
{Archive β archive}/submission_CAFe.json
RENAMED
|
File without changes
|
{Scores β scores}/LamRA-Ret-Qwen2.5VL-7b.json
RENAMED
|
File without changes
|
{Scores β scores}/LamRA-Ret.json
RENAMED
|
File without changes
|
{Scores β scores}/VLM2Vec-Qwen2-VL-V2.0-scores_report.json
RENAMED
|
File without changes
|
{Scores β scores}/VLM2Vec-Qwen2-VL-V2.1-scores_report.json
RENAMED
|
File without changes
|
{Scores β scores}/VLM2Vec-V1-Qwen2VL-2B.json
RENAMED
|
File without changes
|
{Scores β scores}/VLM2Vec-V1-Qwen2VL-7B.json
RENAMED
|
File without changes
|
{Scores β scores}/VLM2Vec-V2.0-Qwen2VL-2B.json
RENAMED
|
File without changes
|
{Scores β scores}/colpali-v1.3.json
RENAMED
|
File without changes
|
{Scores β scores}/gme-Qwen2-VL-2B-Instruct.json
RENAMED
|
File without changes
|
{Scores β scores}/gme-Qwen2-VL-7B-Instruct.json
RENAMED
|
File without changes
|
utils.py
CHANGED
|
@@ -18,7 +18,7 @@ DATA_TITLE_TYPE = ['number', 'markdown', 'str', 'markdown'] + \
|
|
| 18 |
['number'] * len(TASKS_V1)
|
| 19 |
|
| 20 |
LEADERBOARD_INTRODUCTION = """
|
| 21 |
-
# π **MMEB LEADERBOARD**
|
| 22 |
|
| 23 |
## Introduction
|
| 24 |
We introduce a novel benchmark, **MMEB-V1 (Massive Multimodal Embedding Benchmark)**,
|
|
|
|
| 18 |
['number'] * len(TASKS_V1)
|
| 19 |
|
| 20 |
LEADERBOARD_INTRODUCTION = """
|
| 21 |
+
# π **MMEB LEADERBOARD (VLM2Vec)**
|
| 22 |
|
| 23 |
## Introduction
|
| 24 |
We introduce a novel benchmark, **MMEB-V1 (Massive Multimodal Embedding Benchmark)**,
|
utils_v2.py
CHANGED
|
@@ -11,7 +11,7 @@ def sum_lst(lst):
|
|
| 11 |
total += item
|
| 12 |
return total
|
| 13 |
|
| 14 |
-
SCORE_BASE_DIR = "
|
| 15 |
META_DATA = ["model_name", "model_size", "url"]
|
| 16 |
DATASETS = {
|
| 17 |
"image": {
|
|
@@ -41,9 +41,9 @@ BASE_COLS = ['Rank', 'Models', 'Model Size(B)']
|
|
| 41 |
TASKS = ["Overall", "I-CLS", "I-QA", "I-RET", "I-VG", "VisDoc", "V-CLS", "V-QA", "V-RET", "V-MRET"]
|
| 42 |
BASE_DATA_TITLE_TYPE = ['number', 'markdown', 'str', 'markdown']
|
| 43 |
|
| 44 |
-
COLUMN_NAMES = BASE_COLS +
|
| 45 |
DATA_TITLE_TYPE = BASE_DATA_TITLE_TYPE + \
|
| 46 |
-
['number'] *
|
| 47 |
|
| 48 |
TASKS_I = ['Image-Overall'] + ALL_DATASETS_SPLITS['image']
|
| 49 |
COLUMN_NAMES_I = BASE_COLS + TASKS_I
|
|
@@ -97,7 +97,7 @@ def load_scores(raw_scores=None):
|
|
| 97 |
if modality == 'visdoc':
|
| 98 |
metric = "ndcg_linear@5" if "ndcg_linear@5" in score else "ndcg@5"
|
| 99 |
score = score.get(metric, 0.0)
|
| 100 |
-
all_scores[dataset] = round(score,
|
| 101 |
return all_scores
|
| 102 |
|
| 103 |
def calculate_score(raw_scores=None):
|
|
|
|
| 11 |
total += item
|
| 12 |
return total
|
| 13 |
|
| 14 |
+
SCORE_BASE_DIR = "scores"
|
| 15 |
META_DATA = ["model_name", "model_size", "url"]
|
| 16 |
DATASETS = {
|
| 17 |
"image": {
|
|
|
|
| 41 |
TASKS = ["Overall", "I-CLS", "I-QA", "I-RET", "I-VG", "VisDoc", "V-CLS", "V-QA", "V-RET", "V-MRET"]
|
| 42 |
BASE_DATA_TITLE_TYPE = ['number', 'markdown', 'str', 'markdown']
|
| 43 |
|
| 44 |
+
COLUMN_NAMES = BASE_COLS + ["Overall", 'Image-Overall', 'Video-Overall', 'VisDoc']
|
| 45 |
DATA_TITLE_TYPE = BASE_DATA_TITLE_TYPE + \
|
| 46 |
+
['number'] * 3
|
| 47 |
|
| 48 |
TASKS_I = ['Image-Overall'] + ALL_DATASETS_SPLITS['image']
|
| 49 |
COLUMN_NAMES_I = BASE_COLS + TASKS_I
|
|
|
|
| 97 |
if modality == 'visdoc':
|
| 98 |
metric = "ndcg_linear@5" if "ndcg_linear@5" in score else "ndcg@5"
|
| 99 |
score = score.get(metric, 0.0)
|
| 100 |
+
all_scores[dataset] = round(score, 4) * 100.0
|
| 101 |
return all_scores
|
| 102 |
|
| 103 |
def calculate_score(raw_scores=None):
|