Spaces:
Running
Running
add unime (#34)
Browse files- add qqmm (aa65c27b94fd6688e121c037a24bc77a56487954)
- fixed (9198f1f4c54b6c885c3cec4de0a25f82ce27866b)
- add unime (890840c38867b6924ccd7733e1d4c76b3752f831)
- results.csv +4 -1
- utils.py +8 -1
results.csv
CHANGED
|
@@ -23,4 +23,7 @@ VLM2Vec (Qwen2-VL-7B-LoRA-HighRes),8.29,TIGER-Lab,65.8,62.6,57.8,69.9,81.7
|
|
| 23 |
VLM2Vec (Qwen2-VL-2B-LoRA-HighRes),2.21,TIGER-Lab,59.3,59.0,49.4,65.4,73.4
|
| 24 |
LLaVE-7B,8.03,Self-Reported,70.3,65.7,65.4,70.9,91.9
|
| 25 |
LLaVE-2B,1.95,Self-Reported,65.2,62.1,60.2,65.2,84.9
|
| 26 |
-
LLaVE-0.5B,0.894,Self-Reported,59.1,57.4,50.3,59.8,82.9
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
VLM2Vec (Qwen2-VL-2B-LoRA-HighRes),2.21,TIGER-Lab,59.3,59.0,49.4,65.4,73.4
|
| 24 |
LLaVE-7B,8.03,Self-Reported,70.3,65.7,65.4,70.9,91.9
|
| 25 |
LLaVE-2B,1.95,Self-Reported,65.2,62.1,60.2,65.2,84.9
|
| 26 |
+
LLaVE-0.5B,0.894,Self-Reported,59.1,57.4,50.3,59.8,82.9
|
| 27 |
+
UniME(LLaVA-OneVision-7B-LoRA-Res336),8.03,Self-Reported,70.7,66.8,66.6,70.5,90.9
|
| 28 |
+
UniME(LLaVA-1.6-7B-LoRA-LowRes),7.57,Self-Reported,66.6,60.6,52.9,67.9,85.1
|
| 29 |
+
UniME(Phi-3.5-V-LoRA),4.2,Self-Reported,64.2,54.8,55.9,64.5,81.8
|
utils.py
CHANGED
|
@@ -41,6 +41,8 @@ or a combination of both. MMEB is divided into 20 in-distribution datasets, whic
|
|
| 41 |
training, and 16 out-of-distribution datasets, reserved for evaluation.
|
| 42 |
|
| 43 |
The detailed explanation of the benchmark and datasets can be found in our paper: https://doi.org/10.48550/arXiv.2410.05160.
|
|
|
|
|
|
|
| 44 |
"""
|
| 45 |
|
| 46 |
TABLE_INTRODUCTION = """"""
|
|
@@ -94,6 +96,8 @@ SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction
|
|
| 94 |
},
|
| 95 |
]
|
| 96 |
```
|
|
|
|
|
|
|
| 97 |
Please send us an email at m7su@uwaterloo.ca, attaching the JSON file. We will review your submission and update the leaderboard accordingly.
|
| 98 |
"""
|
| 99 |
|
|
@@ -117,7 +121,10 @@ MODEL_URLS = {
|
|
| 117 |
"MM-Embed": "https://huggingface.co/nvidia/MM-Embed",
|
| 118 |
"LLaVE-7B": "https://huggingface.co/zhibinlan/LLaVE-7B",
|
| 119 |
"LLaVE-2B": "https://huggingface.co/zhibinlan/LLaVE-2B",
|
| 120 |
-
"LLaVE-0.5B": "https://huggingface.co/zhibinlan/LLaVE-0.5B"
|
|
|
|
|
|
|
|
|
|
| 121 |
}
|
| 122 |
|
| 123 |
def create_hyperlinked_names(df):
|
|
|
|
| 41 |
training, and 16 out-of-distribution datasets, reserved for evaluation.
|
| 42 |
|
| 43 |
The detailed explanation of the benchmark and datasets can be found in our paper: https://doi.org/10.48550/arXiv.2410.05160.
|
| 44 |
+
Github link: https://github.com/TIGER-AI-Lab/VLM2Vec
|
| 45 |
+
Overview: https://tiger-ai-lab.github.io/VLM2Vec/
|
| 46 |
"""
|
| 47 |
|
| 48 |
TABLE_INTRODUCTION = """"""
|
|
|
|
| 96 |
},
|
| 97 |
]
|
| 98 |
```
|
| 99 |
+
You may refer to the Github page for instructions about evaluating your model.
|
| 100 |
+
Github link: https://github.com/TIGER-AI-Lab/VLM2Vec
|
| 101 |
Please send us an email at m7su@uwaterloo.ca, attaching the JSON file. We will review your submission and update the leaderboard accordingly.
|
| 102 |
"""
|
| 103 |
|
|
|
|
| 121 |
"MM-Embed": "https://huggingface.co/nvidia/MM-Embed",
|
| 122 |
"LLaVE-7B": "https://huggingface.co/zhibinlan/LLaVE-7B",
|
| 123 |
"LLaVE-2B": "https://huggingface.co/zhibinlan/LLaVE-2B",
|
| 124 |
+
"LLaVE-0.5B": "https://huggingface.co/zhibinlan/LLaVE-0.5B",
|
| 125 |
+
"UniME(LLaVA-OneVision-7B-LoRA-Res336)": "https://huggingface.co/DeepGlint-AI/UniME-LLaVA-OneVision-7B",
|
| 126 |
+
"UniME(LLaVA-1.6-7B-LoRA-LowRes)": "https://huggingface.co/DeepGlint-AI/UniME-LLaVA-1.6-7B",
|
| 127 |
+
"UniME(Phi-3.5-V-LoRA)": "https://huggingface.co/DeepGlint-AI/UniME-Phi3.5-V-4.2B"
|
| 128 |
}
|
| 129 |
|
| 130 |
def create_hyperlinked_names(df):
|