Spaces:
Running
on
Zero
Running
on
Zero
| # adopted from | |
| # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py | |
| # and | |
| # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py | |
| # and | |
| # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py | |
| # | |
| # thanks! | |
| import torch.nn as nn | |
| from utils.utils import instantiate_from_config | |
| def disabled_train(self, mode=True): | |
| """Overwrite model.train with this function to make sure train/eval mode | |
| does not change anymore.""" | |
| return self | |
| def zero_module(module): | |
| """ | |
| Zero out the parameters of a module and return it. | |
| """ | |
| for p in module.parameters(): | |
| p.detach().zero_() | |
| return module | |
| def scale_module(module, scale): | |
| """ | |
| Scale the parameters of a module and return it. | |
| """ | |
| for p in module.parameters(): | |
| p.detach().mul_(scale) | |
| return module | |
| def conv_nd(dims, *args, **kwargs): | |
| """ | |
| Create a 1D, 2D, or 3D convolution module. | |
| """ | |
| if dims == 1: | |
| return nn.Conv1d(*args, **kwargs) | |
| elif dims == 2: | |
| return nn.Conv2d(*args, **kwargs) | |
| elif dims == 3: | |
| return nn.Conv3d(*args, **kwargs) | |
| raise ValueError(f"unsupported dimensions: {dims}") | |
| def linear(*args, **kwargs): | |
| """ | |
| Create a linear module. | |
| """ | |
| return nn.Linear(*args, **kwargs) | |
| def avg_pool_nd(dims, *args, **kwargs): | |
| """ | |
| Create a 1D, 2D, or 3D average pooling module. | |
| """ | |
| if dims == 1: | |
| return nn.AvgPool1d(*args, **kwargs) | |
| elif dims == 2: | |
| return nn.AvgPool2d(*args, **kwargs) | |
| elif dims == 3: | |
| return nn.AvgPool3d(*args, **kwargs) | |
| raise ValueError(f"unsupported dimensions: {dims}") | |
| def nonlinearity(type="silu"): | |
| if type == "silu": | |
| return nn.SiLU() | |
| elif type == "leaky_relu": | |
| return nn.LeakyReLU() | |
| class GroupNormSpecific(nn.GroupNorm): | |
| def forward(self, x): | |
| return super().forward(x.float()).type(x.dtype) | |
| def normalization(channels, num_groups=32): | |
| """ | |
| Make a standard normalization layer. | |
| :param channels: number of input channels. | |
| :return: an nn.Module for normalization. | |
| """ | |
| return GroupNormSpecific(num_groups, channels) | |
| class HybridConditioner(nn.Module): | |
| def __init__(self, c_concat_config, c_crossattn_config): | |
| super().__init__() | |
| self.concat_conditioner = instantiate_from_config(c_concat_config) | |
| self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) | |
| def forward(self, c_concat, c_crossattn): | |
| c_concat = self.concat_conditioner(c_concat) | |
| c_crossattn = self.crossattn_conditioner(c_crossattn) | |
| return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]} | |