Spaces:
Running
on
Zero
Running
on
Zero
| from functools import partial | |
| import torch | |
| from torch import nn, einsum | |
| import torch.nn.functional as F | |
| from einops import rearrange, repeat | |
| try: | |
| import xformers | |
| import xformers.ops | |
| XFORMERS_IS_AVAILBLE = True | |
| except: | |
| XFORMERS_IS_AVAILBLE = False | |
| from lvdm.common import ( | |
| checkpoint, | |
| exists, | |
| default, | |
| ) | |
| from lvdm.basics import ( | |
| zero_module, | |
| ) | |
| class RelativePosition(nn.Module): | |
| """https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py""" | |
| def __init__(self, num_units, max_relative_position): | |
| super().__init__() | |
| self.num_units = num_units | |
| self.max_relative_position = max_relative_position | |
| self.embeddings_table = nn.Parameter( | |
| torch.Tensor(max_relative_position * 2 + 1, num_units) | |
| ) | |
| nn.init.xavier_uniform_(self.embeddings_table) | |
| def forward(self, length_q, length_k): | |
| device = self.embeddings_table.device | |
| range_vec_q = torch.arange(length_q, device=device) | |
| range_vec_k = torch.arange(length_k, device=device) | |
| distance_mat = range_vec_k[None, :] - range_vec_q[:, None] | |
| distance_mat_clipped = torch.clamp( | |
| distance_mat, -self.max_relative_position, self.max_relative_position | |
| ) | |
| final_mat = distance_mat_clipped + self.max_relative_position | |
| final_mat = final_mat.long() | |
| embeddings = self.embeddings_table[final_mat] | |
| return embeddings | |
| class CrossAttention(nn.Module): | |
| def __init__( | |
| self, | |
| query_dim, | |
| context_dim=None, | |
| heads=8, | |
| dim_head=64, | |
| dropout=0.0, | |
| relative_position=False, | |
| temporal_length=None, | |
| img_cross_attention=False, | |
| ): | |
| super().__init__() | |
| inner_dim = dim_head * heads | |
| context_dim = default(context_dim, query_dim) | |
| self.scale = dim_head**-0.5 | |
| self.heads = heads | |
| self.dim_head = dim_head | |
| self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
| self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_out = nn.Sequential( | |
| nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) | |
| ) | |
| self.image_cross_attention_scale = 1.0 | |
| self.text_context_len = 77 | |
| self.img_cross_attention = img_cross_attention | |
| if self.img_cross_attention: | |
| self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.relative_position = relative_position | |
| if self.relative_position: | |
| assert temporal_length is not None | |
| self.relative_position_k = RelativePosition( | |
| num_units=dim_head, max_relative_position=temporal_length | |
| ) | |
| self.relative_position_v = RelativePosition( | |
| num_units=dim_head, max_relative_position=temporal_length | |
| ) | |
| else: | |
| ## only used for spatial attention, while NOT for temporal attention | |
| if XFORMERS_IS_AVAILBLE and temporal_length is None: | |
| self.forward = self.efficient_forward | |
| def forward(self, x, context=None, mask=None): | |
| h = self.heads | |
| q = self.to_q(x) | |
| context = default(context, x) | |
| ## considering image token additionally | |
| if context is not None and self.img_cross_attention: | |
| context, context_img = ( | |
| context[:, : self.text_context_len, :], | |
| context[:, self.text_context_len :, :], | |
| ) | |
| k = self.to_k(context) | |
| v = self.to_v(context) | |
| k_ip = self.to_k_ip(context_img) | |
| v_ip = self.to_v_ip(context_img) | |
| else: | |
| k = self.to_k(context) | |
| v = self.to_v(context) | |
| q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) | |
| sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale | |
| if self.relative_position: | |
| len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1] | |
| k2 = self.relative_position_k(len_q, len_k) | |
| sim2 = einsum("b t d, t s d -> b t s", q, k2) * self.scale # TODO check | |
| sim += sim2 | |
| del k | |
| if exists(mask): | |
| ## feasible for causal attention mask only | |
| max_neg_value = -torch.finfo(sim.dtype).max | |
| mask = repeat(mask, "b i j -> (b h) i j", h=h) | |
| sim.masked_fill_(~(mask > 0.5), max_neg_value) | |
| # attention, what we cannot get enough of | |
| sim = sim.softmax(dim=-1) | |
| out = torch.einsum("b i j, b j d -> b i d", sim, v) | |
| if self.relative_position: | |
| v2 = self.relative_position_v(len_q, len_v) | |
| out2 = einsum("b t s, t s d -> b t d", sim, v2) # TODO check | |
| out += out2 | |
| out = rearrange(out, "(b h) n d -> b n (h d)", h=h) | |
| ## considering image token additionally | |
| if context is not None and self.img_cross_attention: | |
| k_ip, v_ip = map( | |
| lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (k_ip, v_ip) | |
| ) | |
| sim_ip = torch.einsum("b i d, b j d -> b i j", q, k_ip) * self.scale | |
| del k_ip | |
| sim_ip = sim_ip.softmax(dim=-1) | |
| out_ip = torch.einsum("b i j, b j d -> b i d", sim_ip, v_ip) | |
| out_ip = rearrange(out_ip, "(b h) n d -> b n (h d)", h=h) | |
| out = out + self.image_cross_attention_scale * out_ip | |
| del q | |
| return self.to_out(out) | |
| def efficient_forward(self, x, context=None, mask=None): | |
| q = self.to_q(x) | |
| context = default(context, x) | |
| ## considering image token additionally | |
| if context is not None and self.img_cross_attention: | |
| context, context_img = ( | |
| context[:, : self.text_context_len, :], | |
| context[:, self.text_context_len :, :], | |
| ) | |
| k = self.to_k(context) | |
| v = self.to_v(context) | |
| k_ip = self.to_k_ip(context_img) | |
| v_ip = self.to_v_ip(context_img) | |
| else: | |
| k = self.to_k(context) | |
| v = self.to_v(context) | |
| b, _, _ = q.shape | |
| q, k, v = map( | |
| lambda t: t.unsqueeze(3) | |
| .reshape(b, t.shape[1], self.heads, self.dim_head) | |
| .permute(0, 2, 1, 3) | |
| .reshape(b * self.heads, t.shape[1], self.dim_head) | |
| .contiguous(), | |
| (q, k, v), | |
| ) | |
| # actually compute the attention, what we cannot get enough of | |
| out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None) | |
| ## considering image token additionally | |
| if context is not None and self.img_cross_attention: | |
| k_ip, v_ip = map( | |
| lambda t: t.unsqueeze(3) | |
| .reshape(b, t.shape[1], self.heads, self.dim_head) | |
| .permute(0, 2, 1, 3) | |
| .reshape(b * self.heads, t.shape[1], self.dim_head) | |
| .contiguous(), | |
| (k_ip, v_ip), | |
| ) | |
| out_ip = xformers.ops.memory_efficient_attention( | |
| q, k_ip, v_ip, attn_bias=None, op=None | |
| ) | |
| out_ip = ( | |
| out_ip.unsqueeze(0) | |
| .reshape(b, self.heads, out.shape[1], self.dim_head) | |
| .permute(0, 2, 1, 3) | |
| .reshape(b, out.shape[1], self.heads * self.dim_head) | |
| ) | |
| if exists(mask): | |
| raise NotImplementedError | |
| out = ( | |
| out.unsqueeze(0) | |
| .reshape(b, self.heads, out.shape[1], self.dim_head) | |
| .permute(0, 2, 1, 3) | |
| .reshape(b, out.shape[1], self.heads * self.dim_head) | |
| ) | |
| if context is not None and self.img_cross_attention: | |
| out = out + self.image_cross_attention_scale * out_ip | |
| return self.to_out(out) | |
| class BasicTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| n_heads, | |
| d_head, | |
| dropout=0.0, | |
| context_dim=None, | |
| gated_ff=True, | |
| checkpoint=True, | |
| disable_self_attn=False, | |
| attention_cls=None, | |
| img_cross_attention=False, | |
| ): | |
| super().__init__() | |
| attn_cls = CrossAttention if attention_cls is None else attention_cls | |
| self.disable_self_attn = disable_self_attn | |
| self.attn1 = attn_cls( | |
| query_dim=dim, | |
| heads=n_heads, | |
| dim_head=d_head, | |
| dropout=dropout, | |
| context_dim=context_dim if self.disable_self_attn else None, | |
| ) | |
| self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
| self.attn2 = attn_cls( | |
| query_dim=dim, | |
| context_dim=context_dim, | |
| heads=n_heads, | |
| dim_head=d_head, | |
| dropout=dropout, | |
| img_cross_attention=img_cross_attention, | |
| ) | |
| self.norm1 = nn.LayerNorm(dim) | |
| self.norm2 = nn.LayerNorm(dim) | |
| self.norm3 = nn.LayerNorm(dim) | |
| self.checkpoint = checkpoint | |
| def forward(self, x, context=None, mask=None): | |
| ## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments | |
| input_tuple = ( | |
| x, | |
| ) ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments | |
| if context is not None: | |
| input_tuple = (x, context) | |
| if mask is not None: | |
| forward_mask = partial(self._forward, mask=mask) | |
| return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint) | |
| if context is not None and mask is not None: | |
| input_tuple = (x, context, mask) | |
| return checkpoint( | |
| self._forward, input_tuple, self.parameters(), self.checkpoint | |
| ) | |
| def _forward(self, x, context=None, mask=None): | |
| x = ( | |
| self.attn1( | |
| self.norm1(x), | |
| context=context if self.disable_self_attn else None, | |
| mask=mask, | |
| ) | |
| + x | |
| ) | |
| x = self.attn2(self.norm2(x), context=context, mask=mask) + x | |
| x = self.ff(self.norm3(x)) + x | |
| return x | |
| class SpatialTransformer(nn.Module): | |
| """ | |
| Transformer block for image-like data in spatial axis. | |
| First, project the input (aka embedding) | |
| and reshape to b, t, d. | |
| Then apply standard transformer action. | |
| Finally, reshape to image | |
| NEW: use_linear for more efficiency instead of the 1x1 convs | |
| """ | |
| def __init__( | |
| self, | |
| in_channels, | |
| n_heads, | |
| d_head, | |
| depth=1, | |
| dropout=0.0, | |
| context_dim=None, | |
| use_checkpoint=True, | |
| disable_self_attn=False, | |
| use_linear=False, | |
| img_cross_attention=False, | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| inner_dim = n_heads * d_head | |
| self.norm = torch.nn.GroupNorm( | |
| num_groups=32, num_channels=in_channels, eps=1e-6, affine=True | |
| ) | |
| if not use_linear: | |
| self.proj_in = nn.Conv2d( | |
| in_channels, inner_dim, kernel_size=1, stride=1, padding=0 | |
| ) | |
| else: | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| inner_dim, | |
| n_heads, | |
| d_head, | |
| dropout=dropout, | |
| context_dim=context_dim, | |
| img_cross_attention=img_cross_attention, | |
| disable_self_attn=disable_self_attn, | |
| checkpoint=use_checkpoint, | |
| ) | |
| for d in range(depth) | |
| ] | |
| ) | |
| if not use_linear: | |
| self.proj_out = zero_module( | |
| nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
| ) | |
| else: | |
| self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) | |
| self.use_linear = use_linear | |
| def forward(self, x, context=None): | |
| b, c, h, w = x.shape | |
| x_in = x | |
| x = self.norm(x) | |
| if not self.use_linear: | |
| x = self.proj_in(x) | |
| x = rearrange(x, "b c h w -> b (h w) c").contiguous() | |
| if self.use_linear: | |
| x = self.proj_in(x) | |
| for i, block in enumerate(self.transformer_blocks): | |
| x = block(x, context=context) | |
| if self.use_linear: | |
| x = self.proj_out(x) | |
| x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() | |
| if not self.use_linear: | |
| x = self.proj_out(x) | |
| return x + x_in | |
| class TemporalTransformer(nn.Module): | |
| """ | |
| Transformer block for image-like data in temporal axis. | |
| First, reshape to b, t, d. | |
| Then apply standard transformer action. | |
| Finally, reshape to image | |
| """ | |
| def __init__( | |
| self, | |
| in_channels, | |
| n_heads, | |
| d_head, | |
| depth=1, | |
| dropout=0.0, | |
| context_dim=None, | |
| use_checkpoint=True, | |
| use_linear=False, | |
| only_self_att=True, | |
| causal_attention=False, | |
| relative_position=False, | |
| temporal_length=None, | |
| ): | |
| super().__init__() | |
| self.only_self_att = only_self_att | |
| self.relative_position = relative_position | |
| self.causal_attention = causal_attention | |
| self.in_channels = in_channels | |
| inner_dim = n_heads * d_head | |
| self.norm = torch.nn.GroupNorm( | |
| num_groups=32, num_channels=in_channels, eps=1e-6, affine=True | |
| ) | |
| self.proj_in = nn.Conv1d( | |
| in_channels, inner_dim, kernel_size=1, stride=1, padding=0 | |
| ) | |
| if not use_linear: | |
| self.proj_in = nn.Conv1d( | |
| in_channels, inner_dim, kernel_size=1, stride=1, padding=0 | |
| ) | |
| else: | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| if relative_position: | |
| assert temporal_length is not None | |
| attention_cls = partial( | |
| CrossAttention, relative_position=True, temporal_length=temporal_length | |
| ) | |
| else: | |
| attention_cls = None | |
| if self.causal_attention: | |
| assert temporal_length is not None | |
| self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length])) | |
| if self.only_self_att: | |
| context_dim = None | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| inner_dim, | |
| n_heads, | |
| d_head, | |
| dropout=dropout, | |
| context_dim=context_dim, | |
| attention_cls=attention_cls, | |
| checkpoint=use_checkpoint, | |
| ) | |
| for d in range(depth) | |
| ] | |
| ) | |
| if not use_linear: | |
| self.proj_out = zero_module( | |
| nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
| ) | |
| else: | |
| self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) | |
| self.use_linear = use_linear | |
| def forward(self, x, context=None): | |
| b, c, t, h, w = x.shape | |
| x_in = x | |
| x = self.norm(x) | |
| x = rearrange(x, "b c t h w -> (b h w) c t").contiguous() | |
| if not self.use_linear: | |
| x = self.proj_in(x) | |
| x = rearrange(x, "bhw c t -> bhw t c").contiguous() | |
| if self.use_linear: | |
| x = self.proj_in(x) | |
| if self.causal_attention: | |
| mask = self.mask.to(x.device) | |
| mask = repeat(mask, "l i j -> (l bhw) i j", bhw=b * h * w) | |
| else: | |
| mask = None | |
| if self.only_self_att: | |
| ## note: if no context is given, cross-attention defaults to self-attention | |
| for i, block in enumerate(self.transformer_blocks): | |
| x = block(x, mask=mask) | |
| x = rearrange(x, "(b hw) t c -> b hw t c", b=b).contiguous() | |
| else: | |
| x = rearrange(x, "(b hw) t c -> b hw t c", b=b).contiguous() | |
| context = rearrange(context, "(b t) l con -> b t l con", t=t).contiguous() | |
| for i, block in enumerate(self.transformer_blocks): | |
| # calculate each batch one by one (since number in shape could not greater then 65,535 for some package) | |
| for j in range(b): | |
| context_j = repeat( | |
| context[j], "t l con -> (t r) l con", r=(h * w) // t, t=t | |
| ).contiguous() | |
| ## note: causal mask will not applied in cross-attention case | |
| x[j] = block(x[j], context=context_j) | |
| if self.use_linear: | |
| x = self.proj_out(x) | |
| x = rearrange(x, "b (h w) t c -> b c t h w", h=h, w=w).contiguous() | |
| if not self.use_linear: | |
| x = rearrange(x, "b hw t c -> (b hw) c t").contiguous() | |
| x = self.proj_out(x) | |
| x = rearrange(x, "(b h w) c t -> b c t h w", b=b, h=h, w=w).contiguous() | |
| return x + x_in | |
| class GEGLU(nn.Module): | |
| def __init__(self, dim_in, dim_out): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out * 2) | |
| def forward(self, x): | |
| x, gate = self.proj(x).chunk(2, dim=-1) | |
| return x * F.gelu(gate) | |
| class FeedForward(nn.Module): | |
| def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): | |
| super().__init__() | |
| inner_dim = int(dim * mult) | |
| dim_out = default(dim_out, dim) | |
| project_in = ( | |
| nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) | |
| if not glu | |
| else GEGLU(dim, inner_dim) | |
| ) | |
| self.net = nn.Sequential( | |
| project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) | |
| ) | |
| def forward(self, x): | |
| return self.net(x) | |
| class LinearAttention(nn.Module): | |
| def __init__(self, dim, heads=4, dim_head=32): | |
| super().__init__() | |
| self.heads = heads | |
| hidden_dim = dim_head * heads | |
| self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) | |
| self.to_out = nn.Conv2d(hidden_dim, dim, 1) | |
| def forward(self, x): | |
| b, c, h, w = x.shape | |
| qkv = self.to_qkv(x) | |
| q, k, v = rearrange( | |
| qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 | |
| ) | |
| k = k.softmax(dim=-1) | |
| context = torch.einsum("bhdn,bhen->bhde", k, v) | |
| out = torch.einsum("bhde,bhdn->bhen", context, q) | |
| out = rearrange( | |
| out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w | |
| ) | |
| return self.to_out(out) | |
| class SpatialSelfAttention(nn.Module): | |
| def __init__(self, in_channels): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.norm = torch.nn.GroupNorm( | |
| num_groups=32, num_channels=in_channels, eps=1e-6, affine=True | |
| ) | |
| self.q = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.k = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.v = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.proj_out = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| def forward(self, x): | |
| h_ = x | |
| h_ = self.norm(h_) | |
| q = self.q(h_) | |
| k = self.k(h_) | |
| v = self.v(h_) | |
| # compute attention | |
| b, c, h, w = q.shape | |
| q = rearrange(q, "b c h w -> b (h w) c") | |
| k = rearrange(k, "b c h w -> b c (h w)") | |
| w_ = torch.einsum("bij,bjk->bik", q, k) | |
| w_ = w_ * (int(c) ** (-0.5)) | |
| w_ = torch.nn.functional.softmax(w_, dim=2) | |
| # attend to values | |
| v = rearrange(v, "b c h w -> b c (h w)") | |
| w_ = rearrange(w_, "b i j -> b j i") | |
| h_ = torch.einsum("bij,bjk->bik", v, w_) | |
| h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) | |
| h_ = self.proj_out(h_) | |
| return x + h_ | |