import streamlit as st
from openai import OpenAI
import time
import os
import logging
from groq import Groq
import os
import streamlit as st
import logging
from groq import Groq
# Logging setup
logging.basicConfig(level=logging.INFO)
# Streamlit page configuration
st.set_page_config(
page_title="Gazal.ai-o1-preview",
page_icon="🦌",
layout="centered"
)
# Improved CSS for better contrast and design
st.markdown("""
Disclaimer
This app is for demonstration purposes only.
The purpose of this demo is to showcase the power of reasoning large language models (LLMs) in guiding clinical decision support systems.
It is not intended for clinical use. Please consult medical professionals for accurate medical advice.
""", unsafe_allow_html=True)
# Groq API client initialization
@st.cache_resource
def init_groq_client():
return Groq(api_key=os.getenv("GROQ_API_KEY"))
# Chat with Groq model
def chat_with_groq(client, message, history):
try:
# Build the conversation context
messages = [
{"role": "system", "content": "You are a helpful medical and clinical decision support system. Think step by step before answering."},
*[{"role": "user" if i % 2 == 0 else "assistant", "content": m} for h in history for i, m in enumerate(h)],
{"role": "user", "content": message}
]
# Call the Groq model
completion = client.chat.completions.create(
model="deepseek-r1-distill-llama-70b",
messages=messages,
temperature=0.6,
max_tokens=4000,
top_p=0.95,
stream=True, # Stream the response
)
# Stream the response chunk by chunk
response = ""
for chunk in completion:
content = chunk.choices[0].delta.content or ""
response += content
yield response
except Exception as e:
logging.error(f"Error during Groq inference: {str(e)}")
yield f"An error occurred: {str(e)}. Please check your API key and network connection."
# Initialize app state
if "history" not in st.session_state:
st.session_state["history"] = [] # [(user_message, bot_response), ...]
# Display the app title and description
st.title("Gazal.ai-o1-preview 🦌")
st.write("Ask gazal.ai any healthcare question and it will provide step-by-step reasoning.")
# Input form
with st.form("chat_form", clear_on_submit=True):
user_message = st.text_input("Your Message:", key="user_input")
submitted = st.form_submit_button("Send")
# Process user input and display chat
if submitted and user_message:
# Add user message to history
st.session_state["history"].append((user_message, None))
# Display chat history
for user_text, bot_text in st.session_state["history"]:
st.markdown(f'{user_text}
', unsafe_allow_html=True)
if bot_text:
st.markdown(f'{bot_text}
', unsafe_allow_html=True)
# Initialize Groq client
groq_client = init_groq_client()
# Generate bot response
response_placeholder = st.empty() # Placeholder for streaming updates
bot_response = ""
for partial_response in chat_with_groq(groq_client, user_message, st.session_state["history"][:-1]):
bot_response = partial_response # Update bot response incrementally
response_placeholder.markdown(f'{bot_response}
', unsafe_allow_html=True)
# Update history with full bot response
st.session_state["history"][-1] = (user_message, bot_response)
# Clear chat history button
# Clear chat history button
if st.button("Clear Chat"):
st.session_state["history"] = []
st.rerun()
# Footer
st.markdown('', unsafe_allow_html=True)