Spaces:
Runtime error
Runtime error
Duplicate from fedor-ch/langchain-ynp-test
Browse filesCo-authored-by: Chemashkinf <fedor-ch@users.noreply.huggingface.co>
- .gitattributes +34 -0
- README.md +13 -0
- app.py +287 -0
- requirements.txt +8 -0
.gitattributes
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: "Chat with PDF •\_OpenAI"
|
| 3 |
+
emoji: 📄🤖
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: pink
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.27.0
|
| 8 |
+
python_version: 3.10.9
|
| 9 |
+
app_file: app.py
|
| 10 |
+
pinned: false
|
| 11 |
+
duplicated_from: fedor-ch/langchain-ynp-test
|
| 12 |
+
---
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
|
| 5 |
+
from langchain.document_loaders import OnlinePDFLoader
|
| 6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 7 |
+
from langchain.llms import OpenAI
|
| 8 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 9 |
+
from langchain.vectorstores import Chroma
|
| 10 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 11 |
+
from langchain import PromptTemplate
|
| 12 |
+
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
| 13 |
+
import requests
|
| 14 |
+
from PIL import Image
|
| 15 |
+
import torch
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
|
| 20 |
+
# Chat History:
|
| 21 |
+
# {chat_history}
|
| 22 |
+
# Follow Up Input: {question}
|
| 23 |
+
# Standalone question:"""
|
| 24 |
+
|
| 25 |
+
# CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
|
| 26 |
+
|
| 27 |
+
# template = """
|
| 28 |
+
# You are given the following extracted parts of a long document and a question. Provide a short structured answer.
|
| 29 |
+
# If you don't know the answer, look on the web. Don't try to make up an answer.
|
| 30 |
+
# Question: {question}
|
| 31 |
+
# =========
|
| 32 |
+
# {context}
|
| 33 |
+
# =========
|
| 34 |
+
# Answer in Markdown:"""
|
| 35 |
+
|
| 36 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/20294671002019.png', 'chart_example.png')
|
| 37 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/multi_col_1081.png', 'chart_example_2.png')
|
| 38 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/18143564004789.png', 'chart_example_3.png')
|
| 39 |
+
torch.hub.download_url_to_file('https://sharkcoder.com/files/article/matplotlib-bar-plot.png', 'chart_example_4.png')
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
model_name = "google/matcha-chartqa"
|
| 43 |
+
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
|
| 44 |
+
processor = Pix2StructProcessor.from_pretrained(model_name)
|
| 45 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 46 |
+
model.to(device)
|
| 47 |
+
|
| 48 |
+
def filter_output(output):
|
| 49 |
+
return output.replace("<0x0A>", "")
|
| 50 |
+
|
| 51 |
+
def chart_qa(image, question):
|
| 52 |
+
inputs = processor(images=image, text=question, return_tensors="pt").to(device)
|
| 53 |
+
predictions = model.generate(**inputs, max_new_tokens=512)
|
| 54 |
+
return filter_output(processor.decode(predictions[0], skip_special_tokens=True))
|
| 55 |
+
|
| 56 |
+
def loading_pdf():
|
| 57 |
+
return "Loading..."
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def pdf_changes(pdf_doc, open_ai_key):
|
| 61 |
+
if open_ai_key is not None:
|
| 62 |
+
os.environ['OPENAI_API_KEY'] = open_ai_key
|
| 63 |
+
loader = OnlinePDFLoader(pdf_doc.name)
|
| 64 |
+
documents = loader.load()
|
| 65 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
| 66 |
+
texts = text_splitter.split_documents(documents)
|
| 67 |
+
embeddings = OpenAIEmbeddings()
|
| 68 |
+
db = Chroma.from_documents(texts, embeddings)
|
| 69 |
+
retriever = db.as_retriever()
|
| 70 |
+
global qa
|
| 71 |
+
qa = ConversationalRetrievalChain.from_llm(
|
| 72 |
+
llm=OpenAI(temperature=0.5),
|
| 73 |
+
retriever=retriever,
|
| 74 |
+
return_source_documents=True)
|
| 75 |
+
return "Ready"
|
| 76 |
+
else:
|
| 77 |
+
return "You forgot OpenAI API key"
|
| 78 |
+
|
| 79 |
+
def add_text(history, text):
|
| 80 |
+
history = history + [(text, None)]
|
| 81 |
+
return history, ""
|
| 82 |
+
|
| 83 |
+
def bot(history):
|
| 84 |
+
response = infer(history[-1][0], history)
|
| 85 |
+
history[-1][1] = ""
|
| 86 |
+
|
| 87 |
+
for character in response:
|
| 88 |
+
history[-1][1] += character
|
| 89 |
+
time.sleep(0.05)
|
| 90 |
+
yield history
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def infer(question, history):
|
| 94 |
+
res = []
|
| 95 |
+
for human, ai in history[:-1]:
|
| 96 |
+
pair = (human, ai)
|
| 97 |
+
res.append(pair)
|
| 98 |
+
|
| 99 |
+
chat_history = res
|
| 100 |
+
#print(chat_history)
|
| 101 |
+
query = question
|
| 102 |
+
result = qa({"question": query, "chat_history": chat_history})
|
| 103 |
+
#print(result)
|
| 104 |
+
return result["answer"]
|
| 105 |
+
|
| 106 |
+
css="""
|
| 107 |
+
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
| 108 |
+
"""
|
| 109 |
+
|
| 110 |
+
title = """
|
| 111 |
+
<div style="text-align: center;">
|
| 112 |
+
<h1>YnP LangChain Test </h1>
|
| 113 |
+
<p style="text-align: center;">Please specify OpenAI Key before use</p>
|
| 114 |
+
</div>
|
| 115 |
+
"""
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
# with gr.Blocks(css=css) as demo:
|
| 119 |
+
# with gr.Column(elem_id="col-container"):
|
| 120 |
+
# gr.HTML(title)
|
| 121 |
+
|
| 122 |
+
# with gr.Column():
|
| 123 |
+
# openai_key = gr.Textbox(label="You OpenAI API key", type="password")
|
| 124 |
+
# pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
| 125 |
+
# with gr.Row():
|
| 126 |
+
# langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
| 127 |
+
# load_pdf = gr.Button("Load pdf to langchain")
|
| 128 |
+
|
| 129 |
+
# chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
| 130 |
+
# question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
| 131 |
+
# submit_btn = gr.Button("Send Message")
|
| 132 |
+
|
| 133 |
+
# load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
| 134 |
+
# load_pdf.click(pdf_changes, inputs=[pdf_doc, openai_key], outputs=[langchain_status], queue=False)
|
| 135 |
+
# question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
| 136 |
+
# bot, chatbot, chatbot
|
| 137 |
+
# )
|
| 138 |
+
# submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
|
| 139 |
+
# bot, chatbot, chatbot)
|
| 140 |
+
|
| 141 |
+
# demo.launch()
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
"""functions"""
|
| 145 |
+
|
| 146 |
+
def load_file():
|
| 147 |
+
return "Loading..."
|
| 148 |
+
|
| 149 |
+
def load_xlsx(name):
|
| 150 |
+
import pandas as pd
|
| 151 |
+
|
| 152 |
+
xls_file = rf'{name}'
|
| 153 |
+
data = pd.read_excel(xls_file)
|
| 154 |
+
return data
|
| 155 |
+
|
| 156 |
+
def table_loader(table_file, open_ai_key):
|
| 157 |
+
import os
|
| 158 |
+
from langchain.llms import OpenAI
|
| 159 |
+
from langchain.agents import create_pandas_dataframe_agent
|
| 160 |
+
from pandas import read_csv
|
| 161 |
+
|
| 162 |
+
global agent
|
| 163 |
+
if open_ai_key is not None:
|
| 164 |
+
os.environ['OPENAI_API_KEY'] = open_ai_key
|
| 165 |
+
else:
|
| 166 |
+
return "Enter API"
|
| 167 |
+
|
| 168 |
+
if table_file.name.endswith('.xlsx') or table_file.name.endswith('.xls'):
|
| 169 |
+
data = load_xlsx(table_file.name)
|
| 170 |
+
agent = create_pandas_dataframe_agent(OpenAI(temperature=0), data)
|
| 171 |
+
return "Ready!"
|
| 172 |
+
elif table_file.name.endswith('.csv'):
|
| 173 |
+
data = read_csv(table_file.name)
|
| 174 |
+
agent = create_pandas_dataframe_agent(OpenAI(temperature=0), data)
|
| 175 |
+
return "Ready!"
|
| 176 |
+
else:
|
| 177 |
+
return "Wrong file format! Upload excel file or csv!"
|
| 178 |
+
|
| 179 |
+
def run(query):
|
| 180 |
+
from langchain.callbacks import get_openai_callback
|
| 181 |
+
|
| 182 |
+
with get_openai_callback() as cb:
|
| 183 |
+
response = (agent.run(query))
|
| 184 |
+
costs = (f"Total Cost (USD): ${cb.total_cost}")
|
| 185 |
+
output = f'{response} \n {costs}'
|
| 186 |
+
return output
|
| 187 |
+
|
| 188 |
+
def respond(message, chat_history):
|
| 189 |
+
import time
|
| 190 |
+
|
| 191 |
+
bot_message = run(message)
|
| 192 |
+
chat_history.append((message, bot_message))
|
| 193 |
+
time.sleep(0.5)
|
| 194 |
+
return "", chat_history
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
with gr.Blocks() as demo:
|
| 198 |
+
with gr.Column(elem_id="col-container"):
|
| 199 |
+
gr.HTML(title)
|
| 200 |
+
key = gr.Textbox(
|
| 201 |
+
show_label=False,
|
| 202 |
+
placeholder="Your OpenAI key",
|
| 203 |
+
type = 'password',
|
| 204 |
+
).style(container=False)
|
| 205 |
+
|
| 206 |
+
# PDF processing tab
|
| 207 |
+
with gr.Tab("PDFs"):
|
| 208 |
+
|
| 209 |
+
with gr.Row():
|
| 210 |
+
|
| 211 |
+
with gr.Column(scale=0.5):
|
| 212 |
+
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
| 213 |
+
load_pdf = gr.Button("Load pdf to langchain")
|
| 214 |
+
|
| 215 |
+
with gr.Column(scale=0.5):
|
| 216 |
+
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
with gr.Row():
|
| 220 |
+
|
| 221 |
+
with gr.Column(scale=1):
|
| 222 |
+
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
| 223 |
+
|
| 224 |
+
with gr.Row():
|
| 225 |
+
|
| 226 |
+
with gr.Column(scale=0.85):
|
| 227 |
+
question = gr.Textbox(
|
| 228 |
+
show_label=False,
|
| 229 |
+
placeholder="Enter text and press enter, or upload an image",
|
| 230 |
+
).style(container=False)
|
| 231 |
+
|
| 232 |
+
with gr.Column(scale=0.15, min_width=0):
|
| 233 |
+
clr_btn = gr.Button("Clear!")
|
| 234 |
+
|
| 235 |
+
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
| 236 |
+
load_pdf.click(pdf_changes, inputs=[pdf_doc, key], outputs=[langchain_status], queue=True)
|
| 237 |
+
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
| 238 |
+
bot, chatbot, chatbot
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
# XLSX and CSV processing tab
|
| 242 |
+
with gr.Tab("Spreadsheets"):
|
| 243 |
+
with gr.Row():
|
| 244 |
+
|
| 245 |
+
with gr.Column(scale=0.5):
|
| 246 |
+
status_sh = gr.Textbox(label="Status", placeholder="", interactive=False)
|
| 247 |
+
load_table = gr.Button("Load csv|xlsx to langchain")
|
| 248 |
+
|
| 249 |
+
with gr.Column(scale=0.5):
|
| 250 |
+
raw_table = gr.File(label="Load a table file (xls or csv)", file_types=['.csv, xlsx, xls'], type="file")
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
with gr.Row():
|
| 254 |
+
|
| 255 |
+
with gr.Column(scale=1):
|
| 256 |
+
chatbot_sh = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
with gr.Row():
|
| 260 |
+
|
| 261 |
+
with gr.Column(scale=0.85):
|
| 262 |
+
question_sh = gr.Textbox(
|
| 263 |
+
show_label=False,
|
| 264 |
+
placeholder="Enter text and press enter, or upload an image",
|
| 265 |
+
).style(container=False)
|
| 266 |
+
|
| 267 |
+
with gr.Column(scale=0.15, min_width=0):
|
| 268 |
+
clr_btn = gr.Button("Clear!")
|
| 269 |
+
|
| 270 |
+
load_table.click(load_file, None, status_sh, queue=False)
|
| 271 |
+
load_table.click(table_loader, inputs=[raw_table, key], outputs=[status_sh], queue=False)
|
| 272 |
+
|
| 273 |
+
question_sh.submit(respond, [question_sh, chatbot_sh], [question_sh, chatbot_sh])
|
| 274 |
+
clr_btn.click(lambda: None, None, chatbot_sh, queue=False)
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
with gr.Tab("Charts"):
|
| 278 |
+
image = gr.Image(type="pil", label="Chart")
|
| 279 |
+
question = gr.Textbox(label="Question")
|
| 280 |
+
load_chart = gr.Button("Load chart and question!")
|
| 281 |
+
answer = gr.Textbox(label="Model Output")
|
| 282 |
+
|
| 283 |
+
load_chart.click(chart_qa, [image, question], answer)
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
demo.queue(concurrency_count=3)
|
| 287 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
openai
|
| 2 |
+
tiktoken
|
| 3 |
+
chromadb
|
| 4 |
+
langchain
|
| 5 |
+
unstructured
|
| 6 |
+
unstructured[local-inference]
|
| 7 |
+
pandas
|
| 8 |
+
tabulate
|