app.py
Browse files
app.py
CHANGED
|
@@ -1,41 +1,64 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
|
|
|
| 8 |
"yangy50/garbage-classification",
|
|
|
|
| 9 |
"ahmzakif/TrashNet-Classification",
|
|
|
|
| 10 |
"harriskr14/trashnet-vit"
|
| 11 |
]
|
| 12 |
|
| 13 |
-
|
| 14 |
models = []
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
|
|
|
| 22 |
def classify_image(image: Image.Image):
|
| 23 |
results = {}
|
| 24 |
-
|
| 25 |
-
|
|
|
|
| 26 |
with torch.no_grad():
|
| 27 |
-
outputs =
|
| 28 |
pred = outputs.logits.argmax(-1).item()
|
| 29 |
-
label =
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
|
|
|
| 33 |
iface = gr.Interface(
|
| 34 |
fn=classify_image,
|
| 35 |
inputs=gr.Image(type="pil", label="上传图片"),
|
| 36 |
-
outputs="
|
| 37 |
-
title="
|
| 38 |
-
description="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
)
|
| 40 |
|
| 41 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
| 4 |
from PIL import Image
|
| 5 |
import torch
|
| 6 |
|
| 7 |
+
# ---------------- 配置模型列表,包含你提到的全部模型 ----------------
|
| 8 |
+
MODEL_LIST = [
|
| 9 |
+
"prithivMLmods/Trash-Net",
|
| 10 |
"yangy50/garbage-classification",
|
| 11 |
+
"eunoiawiira-vgg-realwaste-classification",
|
| 12 |
"ahmzakif/TrashNet-Classification",
|
| 13 |
+
"ee8225-group4-vit-trashnet-enhanced",
|
| 14 |
"harriskr14/trashnet-vit"
|
| 15 |
]
|
| 16 |
|
| 17 |
+
# ---------------- 加载模型 ----------------
|
| 18 |
models = []
|
| 19 |
+
processors = []
|
| 20 |
+
print("🔹 正在加载模型,请稍等...")
|
| 21 |
+
for model_name in MODEL_LIST:
|
| 22 |
+
try:
|
| 23 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 24 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
| 25 |
+
model.eval()
|
| 26 |
+
processors.append(processor)
|
| 27 |
+
models.append(model)
|
| 28 |
+
print(f"✅ 加载完成: {model_name}")
|
| 29 |
+
except Exception as e:
|
| 30 |
+
print(f"❌ 加载失败: {model_name}, 错误: {e}")
|
| 31 |
|
| 32 |
+
# ---------------- 推理函数 ----------------
|
| 33 |
def classify_image(image: Image.Image):
|
| 34 |
results = {}
|
| 35 |
+
# 遍历所有模型进行预测
|
| 36 |
+
for model_name, processor, model in zip(MODEL_LIST, processors, models):
|
| 37 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 38 |
with torch.no_grad():
|
| 39 |
+
outputs = model(**inputs)
|
| 40 |
pred = outputs.logits.argmax(-1).item()
|
| 41 |
+
label = model.config.id2label[pred]
|
| 42 |
+
results[model_name] = label
|
| 43 |
+
|
| 44 |
+
# 格式化输出,每个模型的结果单独显示
|
| 45 |
+
results_text = "\n".join([f"{name}: {label}" for name, label in results.items()])
|
| 46 |
+
|
| 47 |
+
return results_text
|
| 48 |
|
| 49 |
+
# ---------------- Gradio 界面 ----------------
|
| 50 |
iface = gr.Interface(
|
| 51 |
fn=classify_image,
|
| 52 |
inputs=gr.Image(type="pil", label="上传图片"),
|
| 53 |
+
outputs=[gr.Textbox(label="所有模型预测结果")],
|
| 54 |
+
title="垃圾分类多模型检测",
|
| 55 |
+
description="上传图片后,使用以下模型进行垃圾分类,每个模型结果单独输出:\n"
|
| 56 |
+
"1. prithivMLmods/Trash-Net\n"
|
| 57 |
+
"2. yangy50/garbage-classification\n"
|
| 58 |
+
"3. eunoiawiira-vgg-realwaste-classification\n"
|
| 59 |
+
"4. ahmzakif/TrashNet-Classification\n"
|
| 60 |
+
"5. ee8225-group4-vit-trashnet-enhanced\n"
|
| 61 |
+
"6. harriskr14/trashnet-vit"
|
| 62 |
)
|
| 63 |
|
| 64 |
if __name__ == "__main__":
|