app.py
Browse files
app.py
CHANGED
|
@@ -4,65 +4,54 @@ from transformers import AutoModelForImageClassification, AutoImageProcessor
|
|
| 4 |
from PIL import Image
|
| 5 |
import torch
|
| 6 |
|
| 7 |
-
# ----------------
|
| 8 |
MODEL_LIST = [
|
| 9 |
-
"prithivMLmods/Trash-Net",
|
| 10 |
"yangy50/garbage-classification",
|
| 11 |
-
"
|
| 12 |
-
"
|
| 13 |
-
"ee8225-group4-vit-trashnet-enhanced",
|
| 14 |
-
"harriskr14/trashnet-vit"
|
| 15 |
]
|
| 16 |
|
| 17 |
# ---------------- 加载模型 ----------------
|
| 18 |
models = []
|
| 19 |
processors = []
|
| 20 |
-
|
| 21 |
-
print("🔹 正在加载模型,请稍等...")
|
| 22 |
|
|
|
|
| 23 |
for model_name in MODEL_LIST:
|
| 24 |
try:
|
| 25 |
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 26 |
model = AutoModelForImageClassification.from_pretrained(model_name)
|
| 27 |
model.eval()
|
| 28 |
-
# 只加载模型自带 id2label,不手动干预
|
| 29 |
-
if not hasattr(model.config, "id2label"):
|
| 30 |
-
print(f"⚠️ 模型 {model_name} 没有内置 id2label,预测可能失败")
|
| 31 |
processors.append(processor)
|
| 32 |
models.append(model)
|
| 33 |
-
|
| 34 |
print(f"✅ 加载成功: {model_name}")
|
| 35 |
except Exception as e:
|
| 36 |
print(f"❌ 加载失败: {model_name}, 错误: {e}")
|
| 37 |
|
| 38 |
# ---------------- 推理函数 ----------------
|
| 39 |
def classify_image(image: Image.Image):
|
| 40 |
-
results =
|
| 41 |
-
for
|
| 42 |
try:
|
| 43 |
inputs = processor(images=image, return_tensors="pt")
|
| 44 |
with torch.no_grad():
|
| 45 |
outputs = model(**inputs)
|
| 46 |
pred = outputs.logits.argmax(-1).item()
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
else:
|
| 50 |
-
label = f"⚠️ 无内置 id2label,索引预测: {pred}"
|
| 51 |
-
results[model_name] = label
|
| 52 |
except Exception as e:
|
| 53 |
-
results
|
| 54 |
|
| 55 |
-
|
| 56 |
-
results_text = "\n".join([f"{name}: {label}" for name, label in results.items()])
|
| 57 |
-
return results_text
|
| 58 |
|
| 59 |
# ---------------- Gradio 界面 ----------------
|
| 60 |
iface = gr.Interface(
|
| 61 |
fn=classify_image,
|
| 62 |
inputs=gr.Image(type="pil", label="上传图片"),
|
| 63 |
-
outputs=
|
| 64 |
-
title="
|
| 65 |
-
description="
|
| 66 |
)
|
| 67 |
|
| 68 |
if __name__ == "__main__":
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import torch
|
| 6 |
|
| 7 |
+
# ---------------- 模型列表 ----------------
|
| 8 |
MODEL_LIST = [
|
|
|
|
| 9 |
"yangy50/garbage-classification",
|
| 10 |
+
"harriskr14/trashnet-vit",
|
| 11 |
+
"prithivMLmods/Trash-Net"
|
|
|
|
|
|
|
| 12 |
]
|
| 13 |
|
| 14 |
# ---------------- 加载模型 ----------------
|
| 15 |
models = []
|
| 16 |
processors = []
|
| 17 |
+
loaded_names = []
|
|
|
|
| 18 |
|
| 19 |
+
print("🔹 正在加载模型,请稍等...")
|
| 20 |
for model_name in MODEL_LIST:
|
| 21 |
try:
|
| 22 |
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 23 |
model = AutoModelForImageClassification.from_pretrained(model_name)
|
| 24 |
model.eval()
|
|
|
|
|
|
|
|
|
|
| 25 |
processors.append(processor)
|
| 26 |
models.append(model)
|
| 27 |
+
loaded_names.append(model_name)
|
| 28 |
print(f"✅ 加载成功: {model_name}")
|
| 29 |
except Exception as e:
|
| 30 |
print(f"❌ 加载失败: {model_name}, 错误: {e}")
|
| 31 |
|
| 32 |
# ---------------- 推理函数 ----------------
|
| 33 |
def classify_image(image: Image.Image):
|
| 34 |
+
results = []
|
| 35 |
+
for name, processor, model in zip(loaded_names, processors, models):
|
| 36 |
try:
|
| 37 |
inputs = processor(images=image, return_tensors="pt")
|
| 38 |
with torch.no_grad():
|
| 39 |
outputs = model(**inputs)
|
| 40 |
pred = outputs.logits.argmax(-1).item()
|
| 41 |
+
label = model.config.id2label.get(pred, str(pred))
|
| 42 |
+
results.append(f"{name}: {label}")
|
|
|
|
|
|
|
|
|
|
| 43 |
except Exception as e:
|
| 44 |
+
results.append(f"{name}: ❌ 预测失败 ({e})")
|
| 45 |
|
| 46 |
+
return "\n".join(results)
|
|
|
|
|
|
|
| 47 |
|
| 48 |
# ---------------- Gradio 界面 ----------------
|
| 49 |
iface = gr.Interface(
|
| 50 |
fn=classify_image,
|
| 51 |
inputs=gr.Image(type="pil", label="上传图片"),
|
| 52 |
+
outputs=gr.Textbox(label="模型预测结果", lines=6),
|
| 53 |
+
title="多模型垃圾分类",
|
| 54 |
+
description="使用以下模型进行独立预测:yangy50、harriskr14、prithivMLmods。"
|
| 55 |
)
|
| 56 |
|
| 57 |
if __name__ == "__main__":
|