Spaces:
Paused
Paused
| import gradio as gr | |
| from gradio_client import Client | |
| import os | |
| import zipfile | |
| from datasets import Dataset | |
| from huggingface_hub import HfApi | |
| # Initialize the Gradio client | |
| client = Client("MiniMaxAI/MiniMax-Text-01") | |
| # Function to call the API and get the result | |
| def call_api(prompt): | |
| result = client.predict( | |
| message=prompt, | |
| max_tokens=12800, | |
| temperature=0.1, | |
| top_p=0.9, | |
| api_name="/chat" | |
| ) | |
| return result | |
| # Function to segment the text file into chunks of 3000 words | |
| def segment_text(file_path): | |
| try: | |
| # Try reading with UTF-8 encoding first | |
| with open(file_path, "r", encoding="utf-8") as f: | |
| text = f.read() | |
| except UnicodeDecodeError: | |
| # Fallback to latin-1 encoding if UTF-8 fails | |
| with open(file_path, "r", encoding="latin-1") as f: | |
| text = f.read() | |
| # Split the text into chunks of 3000 words | |
| words = text.split() | |
| chunks = [" ".join(words[i:i + 3000]) for i in range(0, len(words), 3000)] | |
| return chunks | |
| # Function to process the text file and make parallel API calls | |
| def process_text(file, prompt): | |
| # Segment the text file into chunks | |
| chunks = segment_text(file.name) | |
| # Perform two parallel API calls for each chunk | |
| results = [] | |
| for chunk in chunks: | |
| result1 = call_api(f"{prompt}\n\n{chunk}") | |
| result2 = call_api(f"{prompt}\n\n{chunk}") | |
| results.extend([result1, result2]) | |
| # Save results as individual text files | |
| os.makedirs("outputs", exist_ok=True) | |
| for idx, result in enumerate(results): | |
| with open(f"outputs/output_{idx}.txt", "w", encoding="utf-8") as f: | |
| f.write(result) | |
| # Upload to Hugging Face dataset | |
| hf_api = HfApi(token=os.environ["HUGGINGFACE_TOKEN"]) | |
| dataset = Dataset.from_dict({"text": results}) | |
| dataset.push_to_hub("your_huggingface_username/your_dataset_name") | |
| # Create a ZIP file | |
| with zipfile.ZipFile("outputs.zip", "w") as zipf: | |
| for root, dirs, files in os.walk("outputs"): | |
| for file in files: | |
| zipf.write(os.path.join(root, file), file) | |
| return "outputs.zip", "Results uploaded to Hugging Face dataset and ZIP file created." | |
| # Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Text File Processor with Parallel API Calls") | |
| with gr.Row(): | |
| file_input = gr.File(label="Upload Text File") | |
| prompt_input = gr.Textbox(label="Enter Prompt") | |
| with gr.Row(): | |
| output_zip = gr.File(label="Download ZIP File") | |
| output_message = gr.Textbox(label="Status Message") | |
| submit_button = gr.Button("Submit") | |
| submit_button.click( | |
| process_text, | |
| inputs=[file_input, prompt_input], | |
| outputs=[output_zip, output_message] | |
| ) | |
| # Launch the Gradio app with a public link | |
| demo.launch(share=True) |