Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler | |
| import spaces | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.float16 | |
| repo = "stabilityai/stable-diffusion-3-medium-diffusers" | |
| pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1344 | |
| def infer(prompts, negative_prompts, seeds, randomize_seeds, widths, heights, guidance_scales, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
| images = [] | |
| for i, prompt in enumerate(prompts): | |
| if randomize_seeds[i]: | |
| seeds[i] = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seeds[i]) | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompts[i], | |
| guidance_scale=guidance_scales[i], | |
| num_inference_steps=num_inference_steps[i], | |
| width=widths[i], | |
| height=heights[i], | |
| generator=generator | |
| ).images[0] | |
| images.append(image) | |
| return images, seeds | |
| examples = [ | |
| ["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A blurry astronaut", 0, True, 512, 512, 7.5, 28], | |
| ["An astronaut riding a green horse", "Astronaut on a regular horse", 0, True, 512, 512, 7.5, 28], | |
| ["A delicious ceviche cheesecake slice", "A cheesecake that looks boring", 0, True, 512, 512, 7.5, 28], | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 580px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # Demo [Automated Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium) | |
| """) | |
| with gr.Row(): | |
| prompt_group = gr.Group(elem_id="prompt_group") | |
| with prompt_group: | |
| prompt_input = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| negative_prompt_input = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| ) | |
| seed_input = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed_input = gr.Checkbox(label="Randomize seed", value=True) | |
| width_input = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=64, | |
| value=512, | |
| ) | |
| height_input = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=64, | |
| value=512, | |
| ) | |
| guidance_scale_input = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=7.5, | |
| ) | |
| num_inference_steps_input = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=28, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Gallery(label="Results", show_label=False, columns=4, rows=1) | |
| add_button = gr.Button("Add Prompt") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| pass | |
| gr.Examples( | |
| examples = examples, | |
| inputs = [ | |
| prompt_input, | |
| negative_prompt_input, | |
| seed_input, | |
| randomize_seed_input, | |
| width_input, | |
| height_input, | |
| guidance_scale_input, | |
| num_inference_steps_input | |
| ] | |
| ) | |
| def add_prompt(): | |
| prompt_group.duplicate() | |
| def clear_prompts(): | |
| prompt_group.clear() | |
| add_button.click(add_prompt) | |
| gr.on( | |
| triggers=[run_button.click, prompt_input.submit, negative_prompt_input.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt_input, | |
| negative_prompt_input, | |
| seed_input, | |
| randomize_seed_input, | |
| width_input, | |
| height_input, | |
| guidance_scale_input, | |
| num_inference_steps_input | |
| ], | |
| outputs=[result, seed_input], | |
| api_name="infer" | |
| ) | |
| demo.launch() |