Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import modelscope_studio as mgr | |
| import librosa | |
| from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration | |
| from argparse import ArgumentParser | |
| DEFAULT_CKPT_PATH = 'Qwen/Qwen2-Audio-7B-Instruct' | |
| def _get_args(): | |
| parser = ArgumentParser() | |
| parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH, | |
| help="Checkpoint name or path, default to %(default)r") | |
| parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only") | |
| parser.add_argument("--inbrowser", action="store_true", default=False, | |
| help="Automatically launch the interface in a new tab on the default browser.") | |
| parser.add_argument("--server-port", type=int, default=7860, | |
| help="Demo server port.") | |
| parser.add_argument("--server-name", type=str, default="0.0.0.0", | |
| help="Demo server name.") | |
| args = parser.parse_args() | |
| return args | |
| def add_text(chatbot, task_history, input): | |
| text_content = input.text | |
| content = [] | |
| if len(input.files) > 0: | |
| for i in input.files: | |
| content.append({'type': 'audio', 'audio_url': i.path}) | |
| if text_content: | |
| content.append({'type': 'text', 'text': text_content}) | |
| task_history.append({"role": "user", "content": content}) | |
| chatbot.append([{ | |
| "text": input.text, | |
| "files": input.files, | |
| }, None]) | |
| return chatbot, task_history, None | |
| def add_file(chatbot, task_history, audio_file): | |
| """Add audio file to the chat history.""" | |
| task_history.append({"role": "user", "content": [{"audio": audio_file.name}]}) | |
| chatbot.append((f"[Audio file: {audio_file.name}]", None)) | |
| return chatbot, task_history | |
| def reset_user_input(): | |
| """Reset the user input field.""" | |
| return gr.Textbox.update(value='') | |
| def reset_state(task_history): | |
| """Reset the chat history.""" | |
| return [], [] | |
| def regenerate(chatbot, task_history): | |
| """Regenerate the last bot response.""" | |
| if task_history and task_history[-1]['role'] == 'assistant': | |
| task_history.pop() | |
| chatbot.pop() | |
| if task_history: | |
| chatbot, task_history = predict(chatbot, task_history) | |
| return chatbot, task_history | |
| def predict(chatbot, task_history): | |
| """Generate a response from the model.""" | |
| print(f"{task_history=}") | |
| print(f"{chatbot=}") | |
| text = processor.apply_chat_template(task_history, add_generation_prompt=True, tokenize=False) | |
| audios = [] | |
| for message in task_history: | |
| if isinstance(message["content"], list): | |
| for ele in message["content"]: | |
| if ele["type"] == "audio": | |
| audios.append( | |
| librosa.load(ele['audio_url'], sr=processor.feature_extractor.sampling_rate)[0] | |
| ) | |
| if len(audios)==0: | |
| audios=None | |
| print(f"{text=}") | |
| print(f"{audios=}") | |
| inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True) | |
| if not _get_args().cpu_only: | |
| inputs["input_ids"] = inputs.input_ids.to("cuda") | |
| generate_ids = model.generate(**inputs, max_length=256) | |
| generate_ids = generate_ids[:, inputs.input_ids.size(1):] | |
| response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
| print(f"{response=}") | |
| task_history.append({'role': 'assistant', | |
| 'content': response}) | |
| chatbot.append((None, response)) # Add the response to chatbot | |
| return chatbot, task_history | |
| def _launch_demo(args): | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| """<p align="center"><img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/assets/blog/qwenaudio/qwen2audio_logo.png" style="height: 80px"/><p>""") | |
| gr.Markdown("""<center><font size=8>Qwen2-Audio-Instruct Bot</center>""") | |
| gr.Markdown( | |
| """\ | |
| <center><font size=3>This WebUI is based on Qwen2-Audio-Instruct, developed by Alibaba Cloud. \ | |
| (本WebUI基于Qwen2-Audio-Instruct打造,实现聊天机器人功能。)</center>""") | |
| gr.Markdown("""\ | |
| <center><font size=4>Qwen2-Audio <a href="https://modelscope.cn/models/qwen/Qwen2-Audio-7B">🤖 </a> | |
| | <a href="https://huggingface.co/Qwen/Qwen2-Audio-7B">🤗</a>  | | |
| Qwen2-Audio-Instruct <a href="https://modelscope.cn/models/qwen/Qwen2-Audio-7B-Instruct">🤖 </a> | | |
| <a href="https://huggingface.co/Qwen/Qwen2-Audio-7B-Instruct">🤗</a>  | | |
|  <a href="https://github.com/QwenLM/Qwen2-Audio">Github</a></center>""") | |
| chatbot = mgr.Chatbot(label='Qwen2-Audio-7B-Instruct', elem_classes="control-height", height=750) | |
| user_input = mgr.MultimodalInput( | |
| interactive=True, | |
| sources=['microphone', 'upload'], | |
| submit_button_props=dict(value="🚀 Submit (发送)"), | |
| upload_button_props=dict(value="📁 Upload (上传文件)", show_progress=True), | |
| ) | |
| task_history = gr.State([]) | |
| with gr.Row(): | |
| empty_bin = gr.Button("🧹 Clear History (清除历史)") | |
| regen_btn = gr.Button("🤔️ Regenerate (重试)") | |
| user_input.submit(fn=add_text, | |
| inputs=[chatbot, task_history, user_input], | |
| outputs=[chatbot, task_history, user_input]).then( | |
| predict, [chatbot, task_history], [chatbot, task_history], show_progress=True | |
| ) | |
| empty_bin.click(reset_state, outputs=[chatbot, task_history], show_progress=True) | |
| regen_btn.click(regenerate, [chatbot, task_history], [chatbot, task_history], show_progress=True) | |
| demo.queue().launch( | |
| share=False, | |
| inbrowser=args.inbrowser, | |
| server_port=args.server_port, | |
| server_name=args.server_name, | |
| ) | |
| if __name__ == "__main__": | |
| args = _get_args() | |
| if args.cpu_only: | |
| device_map = "cpu" | |
| else: | |
| device_map = "auto" | |
| model = Qwen2AudioForConditionalGeneration.from_pretrained( | |
| args.checkpoint_path, | |
| torch_dtype="auto", | |
| device_map=device_map, | |
| resume_download=True, | |
| ).eval() | |
| model.generation_config.max_new_tokens = 2048 # For chat. | |
| print("generation_config", model.generation_config) | |
| processor = AutoProcessor.from_pretrained(args.checkpoint_path, resume_download=True) | |
| _launch_demo(args) | |