Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import json
|
| 4 |
+
import ast
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from openai import AzureOpenAI
|
| 7 |
+
from PyPDF2 import PdfReader
|
| 8 |
+
from gradio.themes.base import Base
|
| 9 |
+
from gradio.themes.utils import colors, fonts, sizes
|
| 10 |
+
import base64
|
| 11 |
+
|
| 12 |
+
class BaseTheme(Base):
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
*,
|
| 16 |
+
primary_hue: colors.Color | str = colors.orange,
|
| 17 |
+
secondary_hue: colors.Color | str = colors.blue,
|
| 18 |
+
neutral_hue: colors.Color | str = colors.gray,
|
| 19 |
+
spacing_size: sizes.Size | str = sizes.spacing_md,
|
| 20 |
+
radius_size: sizes.Size | str = sizes.radius_md,
|
| 21 |
+
text_size: sizes.Size | str = sizes.text_lg,
|
| 22 |
+
):
|
| 23 |
+
super().__init__(
|
| 24 |
+
primary_hue=primary_hue,
|
| 25 |
+
secondary_hue=secondary_hue,
|
| 26 |
+
neutral_hue=neutral_hue,
|
| 27 |
+
spacing_size=spacing_size,
|
| 28 |
+
radius_size=radius_size,
|
| 29 |
+
text_size=text_size,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
basetheme = BaseTheme()
|
| 33 |
+
|
| 34 |
+
js_func = """
|
| 35 |
+
function refresh() {
|
| 36 |
+
const url = new URL(window.location);
|
| 37 |
+
|
| 38 |
+
if (url.searchParams.get('__theme') !== 'dark') {
|
| 39 |
+
url.searchParams.set('__theme', 'dark');
|
| 40 |
+
window.location.href = url.href;
|
| 41 |
+
}
|
| 42 |
+
}
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
# Azure OpenAI setup
|
| 46 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = os.getenv("AZURE_OPENAI_ENDPOINT")
|
| 47 |
+
os.environ["AZURE_OPENAI_API_KEY"] = os.getenv("AZURE_OPENAI_API_KEY")
|
| 48 |
+
deployment = os.getenv("AZURE_OPENAI_AI_DEPLOYMENT")
|
| 49 |
+
|
| 50 |
+
client = AzureOpenAI(
|
| 51 |
+
api_version="2023-05-15",
|
| 52 |
+
azure_deployment=deployment,
|
| 53 |
+
)
|
| 54 |
+
# Step 1: Read files and collect column names and first rows
|
| 55 |
+
def read_file_metadata(file_path):
|
| 56 |
+
df = pd.read_csv(file_path)
|
| 57 |
+
column_names = list(df.columns)
|
| 58 |
+
first_row = df.iloc[0].to_dict() # Convert first row to a dictionary
|
| 59 |
+
return column_names, first_row
|
| 60 |
+
|
| 61 |
+
# Step 2: Create the prompt for column mapping
|
| 62 |
+
def create_column_mapping_prompt(metadata):
|
| 63 |
+
prompt = (
|
| 64 |
+
"You are given CSV data from different sources, where column names for similar data vary slightly. "
|
| 65 |
+
"Your task is to suggest mappings to unify columns with similar content under a single name.\n\n"
|
| 66 |
+
)
|
| 67 |
+
for i, (file_path, column_names, first_row) in enumerate(metadata):
|
| 68 |
+
prompt += f"Data from {file_path}:\n"
|
| 69 |
+
prompt += f"Column names: {column_names}\n"
|
| 70 |
+
prompt += f"Example row: {first_row}\n\n"
|
| 71 |
+
prompt += "Suggest mappings to standardize the columns across these files. Please return in JSON format."
|
| 72 |
+
return prompt
|
| 73 |
+
|
| 74 |
+
# Step 3: Call the LLM to get the column mapping
|
| 75 |
+
def get_column_mapping(file_metadata):
|
| 76 |
+
column_match_prompt = create_column_mapping_prompt(file_metadata)
|
| 77 |
+
completion = client.chat.completions.create(
|
| 78 |
+
model="gpt-4o",
|
| 79 |
+
messages=[{"role": "user", "content": column_match_prompt}],
|
| 80 |
+
temperature=0.1,
|
| 81 |
+
response_format={"type": "json_object"},
|
| 82 |
+
)
|
| 83 |
+
print(completion.choices[0].message.content)
|
| 84 |
+
result_dict = ast.literal_eval(completion.choices[0].message.content)
|
| 85 |
+
return result_dict
|
| 86 |
+
|
| 87 |
+
# Step 4: Apply the mapping and merge data
|
| 88 |
+
def merge_files_with_mapping(file_paths):
|
| 89 |
+
file_metadata = []
|
| 90 |
+
for file_path in file_paths:
|
| 91 |
+
column_names, first_row = read_file_metadata(file_path)
|
| 92 |
+
file_metadata.append((file_path, column_names, first_row))
|
| 93 |
+
|
| 94 |
+
result_dict = get_column_mapping(file_metadata)
|
| 95 |
+
|
| 96 |
+
all_data = []
|
| 97 |
+
for file_path in file_paths:
|
| 98 |
+
df = pd.read_csv(file_path)
|
| 99 |
+
df.rename(columns=result_dict, inplace=True)
|
| 100 |
+
all_data.append(df)
|
| 101 |
+
|
| 102 |
+
final_df = pd.concat(all_data, ignore_index=True)
|
| 103 |
+
final_df.to_csv("merged_data.csv", index=False)
|
| 104 |
+
return final_df
|
| 105 |
+
|
| 106 |
+
# Step 5: Extract text from PDF
|
| 107 |
+
def extract_text_from_pdf(pdf_path):
|
| 108 |
+
reader = PdfReader(pdf_path)
|
| 109 |
+
text = ""
|
| 110 |
+
for page in reader.pages:
|
| 111 |
+
text += page.extract_text() or ""
|
| 112 |
+
return text
|
| 113 |
+
|
| 114 |
+
# Step 6: Call the LLM for PDF data mapping
|
| 115 |
+
def map_pdf_to_csv_structure(pdf_path, csv_df):
|
| 116 |
+
pdf_text = extract_text_from_pdf(pdf_path)
|
| 117 |
+
column_headers = list(csv_df.columns)
|
| 118 |
+
first_row_data = csv_df.iloc[0].to_dict()
|
| 119 |
+
|
| 120 |
+
prompt = f"""
|
| 121 |
+
Based on the following document text extracted from a government project in Thailand:
|
| 122 |
+
{pdf_text}
|
| 123 |
+
|
| 124 |
+
Please map the information to JSON format using the following structure:
|
| 125 |
+
Column Headers: {column_headers}
|
| 126 |
+
Example Data (from the first row of the CSV): {first_row_data}
|
| 127 |
+
|
| 128 |
+
Use the column headers as keys and fill in values based on the information from the document.
|
| 129 |
+
If a key is not applicable or data is missing, leave the value as an empty string.
|
| 130 |
+
|
| 131 |
+
Return only JSON with no additional explanations or modifications.
|
| 132 |
+
"""
|
| 133 |
+
completion = client.chat.completions.create(
|
| 134 |
+
model="gpt-4o",
|
| 135 |
+
messages=[{"role": "user", "content": prompt}],
|
| 136 |
+
temperature=0.1,
|
| 137 |
+
response_format={"type": "json_object"},
|
| 138 |
+
)
|
| 139 |
+
result_dict = ast.literal_eval(completion.choices[0].message.content)
|
| 140 |
+
new_data_df = pd.DataFrame([result_dict])
|
| 141 |
+
return new_data_df
|
| 142 |
+
|
| 143 |
+
# Step 7: Combine all data and save as final merged CSV
|
| 144 |
+
def combine_all_data(csv_files, pdf_file):
|
| 145 |
+
merged_csv_df = merge_files_with_mapping(csv_files)
|
| 146 |
+
pdf_data_df = map_pdf_to_csv_structure(pdf_file, merged_csv_df)
|
| 147 |
+
final_df = pd.concat([merged_csv_df, pdf_data_df], ignore_index=True)
|
| 148 |
+
final_df.to_csv("merged_all_data.csv", index=False)
|
| 149 |
+
return final_df
|
| 150 |
+
|
| 151 |
+
# Gradio interface
|
| 152 |
+
def process_data(csv_files, pdf_file):
|
| 153 |
+
final_df = combine_all_data(csv_files, pdf_file)
|
| 154 |
+
return final_df
|
| 155 |
+
# Convert the images to Base64
|
| 156 |
+
with open("Frame 1.png", "rb") as logo_file:
|
| 157 |
+
base64_logo = base64.b64encode(logo_file.read()).decode("utf-8")
|
| 158 |
+
|
| 159 |
+
# Gradio app
|
| 160 |
+
with gr.Blocks(title="AI Data Transformation (AI can make mistakes)",theme=basetheme,js=js_func) as demo:
|
| 161 |
+
# Add logo at the top using Base64 HTML
|
| 162 |
+
with gr.Row():
|
| 163 |
+
gr.HTML(
|
| 164 |
+
f"""
|
| 165 |
+
<div style="display: grid; grid-template-columns: 1fr 2fr 1fr; align-items: center;">
|
| 166 |
+
<div style="justify-self: start;">
|
| 167 |
+
<img src="data:image/png;base64,{base64_logo}" alt="Logo" style="width: 150px; height: auto;">
|
| 168 |
+
</div>
|
| 169 |
+
<div style="justify-self: center;">
|
| 170 |
+
<h2 style="margin: 0; text-align: center;">AI Data Transformation (AI can make mistakes)</h2>
|
| 171 |
+
</div>
|
| 172 |
+
<div></div>
|
| 173 |
+
</div>
|
| 174 |
+
"""
|
| 175 |
+
)
|
| 176 |
+
# Gradio UI
|
| 177 |
+
gr.Interface(
|
| 178 |
+
fn=process_data,
|
| 179 |
+
inputs=[
|
| 180 |
+
gr.File(label="Upload CSV files", file_count="multiple"),
|
| 181 |
+
gr.File(label="Upload PDF file")
|
| 182 |
+
|
| 183 |
+
],
|
| 184 |
+
outputs=gr.Dataframe(label="Final Merged Data (AI can make mistakes)")
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
demo.launch()
|