Spaces:
Running
Running
Modifying App.py
Browse files
app.py
CHANGED
|
@@ -19,6 +19,26 @@ def cropping(img):
|
|
| 19 |
|
| 20 |
return img
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 23 |
print(DEVICE)
|
| 24 |
CWD = "."
|
|
@@ -36,48 +56,35 @@ CKPT_FILE_NAMES = {
|
|
| 36 |
}
|
| 37 |
MODEL_CLASSES = {
|
| 38 |
'Indoor': {
|
| 39 |
-
'Resnet_enc':enc_dec_model,
|
| 40 |
-
'Unet':ResNet18UNet,
|
| 41 |
-
'Densenet_enc':Densenet
|
| 42 |
},
|
| 43 |
|
| 44 |
'Outdoor': {
|
| 45 |
-
'Resnet_enc':enc_dec_model,
|
| 46 |
-
'Unet':UNetWithResnet50Encoder,
|
| 47 |
-
'Densenet_enc':Densenet
|
| 48 |
},
|
| 49 |
-
|
| 50 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
def load_model(ckpt, model, optimizer=None):
|
| 53 |
-
ckpt_dict = torch.load(ckpt, map_location='cpu')
|
| 54 |
-
# keep backward compatibility
|
| 55 |
-
if 'model' not in ckpt_dict and 'optimizer' not in ckpt_dict:
|
| 56 |
-
state_dict = ckpt_dict
|
| 57 |
-
else:
|
| 58 |
-
state_dict = ckpt_dict['model']
|
| 59 |
-
weights = {}
|
| 60 |
-
for key, value in state_dict.items():
|
| 61 |
-
if key.startswith('module.'):
|
| 62 |
-
weights[key[len('module.'):]] = value
|
| 63 |
-
else:
|
| 64 |
-
weights[key] = value
|
| 65 |
-
|
| 66 |
-
model.load_state_dict(weights)
|
| 67 |
-
|
| 68 |
-
if optimizer is not None:
|
| 69 |
-
optimizer_state = ckpt_dict['optimizer']
|
| 70 |
-
optimizer.load_state_dict(optimizer_state)
|
| 71 |
|
| 72 |
|
| 73 |
def predict(location, model_name, img):
|
| 74 |
-
ckpt_dir = f"{CWD}/ckpt/{CKPT_FILE_NAMES[location][model_name]}"
|
| 75 |
-
if location == 'nyu':
|
| 76 |
-
|
| 77 |
-
else:
|
| 78 |
-
|
| 79 |
-
model = MODEL_CLASSES[location][model_name](max_depth).to(DEVICE)
|
| 80 |
-
|
|
|
|
| 81 |
# print(img.shape)
|
| 82 |
# assert False
|
| 83 |
if img.shape == (375,1242,3):
|
|
|
|
| 19 |
|
| 20 |
return img
|
| 21 |
|
| 22 |
+
def load_model(ckpt, model, optimizer=None):
|
| 23 |
+
ckpt_dict = torch.load(ckpt, map_location='cpu')
|
| 24 |
+
# keep backward compatibility
|
| 25 |
+
if 'model' not in ckpt_dict and 'optimizer' not in ckpt_dict:
|
| 26 |
+
state_dict = ckpt_dict
|
| 27 |
+
else:
|
| 28 |
+
state_dict = ckpt_dict['model']
|
| 29 |
+
weights = {}
|
| 30 |
+
for key, value in state_dict.items():
|
| 31 |
+
if key.startswith('module.'):
|
| 32 |
+
weights[key[len('module.'):]] = value
|
| 33 |
+
else:
|
| 34 |
+
weights[key] = value
|
| 35 |
+
|
| 36 |
+
model.load_state_dict(weights)
|
| 37 |
+
|
| 38 |
+
if optimizer is not None:
|
| 39 |
+
optimizer_state = ckpt_dict['optimizer']
|
| 40 |
+
optimizer.load_state_dict(optimizer_state)
|
| 41 |
+
|
| 42 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 43 |
print(DEVICE)
|
| 44 |
CWD = "."
|
|
|
|
| 56 |
}
|
| 57 |
MODEL_CLASSES = {
|
| 58 |
'Indoor': {
|
| 59 |
+
'Resnet_enc':enc_dec_model(max_depth = 10),
|
| 60 |
+
'Unet':ResNet18UNet(max_depth = 10),
|
| 61 |
+
'Densenet_enc':Densenet(max_depth = 10)
|
| 62 |
},
|
| 63 |
|
| 64 |
'Outdoor': {
|
| 65 |
+
'Resnet_enc':enc_dec_model(max_depth = 80),
|
| 66 |
+
'Unet':UNetWithResnet50Encoder(max_depth = 80),
|
| 67 |
+
'Densenet_enc':Densenet(max_depth = 80)
|
| 68 |
},
|
|
|
|
| 69 |
}
|
| 70 |
+
location_types = ['Indoor', 'Outdoor']
|
| 71 |
+
Models = ['Resnet_enc','Unet','Densenet_enc']
|
| 72 |
+
for location in location_types:
|
| 73 |
+
for model in Models:
|
| 74 |
+
ckpt_dir = f"{CWD}/ckpt/{CKPT_FILE_NAMES[location][model]}"
|
| 75 |
+
load_model(CKPT_FILE_NAMES[location][model], MODEL_CLASSES[location][model])
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
|
| 79 |
def predict(location, model_name, img):
|
| 80 |
+
# ckpt_dir = f"{CWD}/ckpt/{CKPT_FILE_NAMES[location][model_name]}"
|
| 81 |
+
# if location == 'nyu':
|
| 82 |
+
# max_depth = 10
|
| 83 |
+
# else:
|
| 84 |
+
# max_depth = 80
|
| 85 |
+
# model = MODEL_CLASSES[location][model_name](max_depth).to(DEVICE)
|
| 86 |
+
model = MODEL_CLASSES[location][model_name].to(DEVICE)
|
| 87 |
+
# load_model(ckpt_dir,model)
|
| 88 |
# print(img.shape)
|
| 89 |
# assert False
|
| 90 |
if img.shape == (375,1242,3):
|