Spaces:
Runtime error
Runtime error
| import math | |
| import torch | |
| import torch.nn as nn | |
| from einops import repeat | |
| from timm.models.layers import to_2tuple | |
| class PatchEmbed(nn.Module): | |
| """ 2D Image to Patch Embedding | |
| Image to Patch Embedding using Conv2d | |
| A convolution based approach to patchifying a 2D image w/ embedding projection. | |
| Based on the impl in https://github.com/google-research/vision_transformer | |
| Hacked together by / Copyright 2020 Ross Wightman | |
| Remove the _assert function in forward function to be compatible with multi-resolution images. | |
| """ | |
| def __init__( | |
| self, | |
| img_size=224, | |
| patch_size=16, | |
| in_chans=3, | |
| embed_dim=768, | |
| norm_layer=None, | |
| flatten=True, | |
| bias=True, | |
| ): | |
| super().__init__() | |
| if isinstance(img_size, int): | |
| img_size = to_2tuple(img_size) | |
| elif isinstance(img_size, (tuple, list)) and len(img_size) == 2: | |
| img_size = tuple(img_size) | |
| else: | |
| raise ValueError(f"img_size must be int or tuple/list of length 2. Got {img_size}") | |
| patch_size = to_2tuple(patch_size) | |
| self.img_size = img_size | |
| self.patch_size = patch_size | |
| self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) | |
| self.num_patches = self.grid_size[0] * self.grid_size[1] | |
| self.flatten = flatten | |
| self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) | |
| self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
| def update_image_size(self, img_size): | |
| self.img_size = img_size | |
| self.grid_size = (img_size[0] // self.patch_size[0], img_size[1] // self.patch_size[1]) | |
| self.num_patches = self.grid_size[0] * self.grid_size[1] | |
| def forward(self, x): | |
| # B, C, H, W = x.shape | |
| # _assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") | |
| # _assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") | |
| x = self.proj(x) | |
| if self.flatten: | |
| x = x.flatten(2).transpose(1, 2) # BCHW -> BNC | |
| x = self.norm(x) | |
| return x | |
| def timestep_embedding(t, dim, max_period=10000, repeat_only=False): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| :param t: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| :param dim: the dimension of the output. | |
| :param max_period: controls the minimum frequency of the embeddings. | |
| :return: an (N, D) Tensor of positional embeddings. | |
| """ | |
| # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
| if not repeat_only: | |
| half = dim // 2 | |
| freqs = torch.exp( | |
| -math.log(max_period) | |
| * torch.arange(start=0, end=half, dtype=torch.float32) | |
| / half | |
| ).to(device=t.device) # size: [dim/2], δΈδΈͺζζ°θ‘°εηζ²ηΊΏ | |
| args = t[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat( | |
| [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 | |
| ) | |
| else: | |
| embedding = repeat(t, "b -> b d", d=dim) | |
| return embedding | |
| class TimestepEmbedder(nn.Module): | |
| """ | |
| Embeds scalar timesteps into vector representations. | |
| """ | |
| def __init__(self, hidden_size, frequency_embedding_size=256, out_size=None): | |
| super().__init__() | |
| if out_size is None: | |
| out_size = hidden_size | |
| self.mlp = nn.Sequential( | |
| nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
| nn.SiLU(), | |
| nn.Linear(hidden_size, out_size, bias=True), | |
| ) | |
| self.frequency_embedding_size = frequency_embedding_size | |
| def forward(self, t): | |
| t_freq = timestep_embedding(t, self.frequency_embedding_size).type(self.mlp[0].weight.dtype) | |
| t_emb = self.mlp(t_freq) | |
| return t_emb | |