Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch BLIP model.""" | |
| from dataclasses import dataclass | |
| from typing import Any, Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn.functional import normalize | |
| from transformers.activations import ACT2FN | |
| from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.utils import ( | |
| ModelOutput, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| logging, | |
| replace_return_docstrings, | |
| ) | |
| from transformers.models.blip.configuration_blip import BlipConfig, BlipTextConfig, BlipVisionConfig | |
| from transformers.models.blip.modeling_blip_text import BlipTextLMHeadModel, BlipTextModel | |
| from .vit_pixel_masks_utils import ViTPatchMaskGenerator | |
| logger = logging.get_logger(__name__) | |
| _CHECKPOINT_FOR_DOC = "Salesforce/blip-vqa-base" | |
| BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "Salesforce/blip-vqa-base", | |
| "Salesforce/blip-vqa-capfit-large", | |
| "Salesforce/blip-image-captioning-base", | |
| "Salesforce/blip-image-captioning-large", | |
| "Salesforce/blip-itm-base-coco", | |
| "Salesforce/blip-itm-large-coco", | |
| "Salesforce/blip-itm-base-flikr", | |
| "Salesforce/blip-itm-large-flikr", | |
| # See all BLIP models at https://huggingface.co/models?filter=blip | |
| ] | |
| # Copied from transformers.models.clip.modeling_clip.contrastive_loss | |
| def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: | |
| return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) | |
| # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->blip | |
| def blip_loss(similarity: torch.Tensor) -> torch.Tensor: | |
| caption_loss = contrastive_loss(similarity) | |
| image_loss = contrastive_loss(similarity.t()) | |
| return (caption_loss + image_loss) / 2.0 | |
| class BlipForConditionalGenerationModelOutput(ModelOutput): | |
| """ | |
| Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the | |
| last hidden states. This class also adds the loss term from the text decoder. | |
| Args: | |
| loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
| Languge modeling loss from the text decoder. | |
| decoder_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*): | |
| Prediction scores of the language modeling head of the text decoder model. | |
| image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*): | |
| The image embeddings obtained after applying the Vision Transformer model to the input image. | |
| last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Sequence of hidden-states at the output of the last layer of the model. | |
| hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`): | |
| Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
| one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
| Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
| attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed): | |
| Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
| sequence_length)`. | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
| heads. | |
| """ | |
| loss: Optional[Tuple[torch.FloatTensor]] = None | |
| decoder_logits: Optional[Tuple[torch.FloatTensor]] = None | |
| image_embeds: Optional[torch.FloatTensor] = None | |
| last_hidden_state: torch.FloatTensor = None | |
| hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| class BlipTextVisionModelOutput(ModelOutput): | |
| """ | |
| Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the | |
| last hidden states. This class also adds the loss term from the text decoder. | |
| Args: | |
| loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
| Languge modeling loss from the text decoder. | |
| image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | |
| The image embeddings obtained by applying the projection layer to the pooler_output. | |
| last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Sequence of hidden-states at the output of the last layer of the model. | |
| hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
| Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
| one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
| Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
| attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
| Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
| sequence_length)`. | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
| heads. | |
| """ | |
| loss: Optional[torch.FloatTensor] = None | |
| image_embeds: Optional[torch.FloatTensor] = None | |
| last_hidden_state: torch.FloatTensor = None | |
| hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| class BlipImageTextMatchingModelOutput(ModelOutput): | |
| """ | |
| Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the | |
| last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity | |
| scores. | |
| Args: | |
| itm_score (`torch.FloatTensor`): | |
| The image-text similarity scores. | |
| loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
| Languge modeling loss from the text decoder. | |
| image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | |
| The image embeddings obtained by applying the projection layer to the pooler_output. | |
| last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Sequence of hidden-states at the output of the last layer of the model. | |
| hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
| Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
| one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
| Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
| vision_pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*): | |
| Last layer hidden-state of the vision of the vision-only branch of the model. | |
| attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
| Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
| sequence_length)`. | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
| heads. | |
| question_embeds (`torch.FloatTensor`): | |
| The question embeddings obtained by the text projection layer. | |
| """ | |
| itm_score: Optional[torch.FloatTensor] = None | |
| loss: Optional[torch.FloatTensor] = None | |
| image_embeds: Optional[torch.FloatTensor] = None | |
| last_hidden_state: torch.FloatTensor = None | |
| hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| vision_pooler_output: Optional[torch.FloatTensor] = None | |
| attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| question_embeds: Optional[Tuple[torch.FloatTensor]] = None | |
| class BlipOutput(ModelOutput): | |
| """ | |
| Args: | |
| loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): | |
| Contrastive loss for image-text similarity. | |
| logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): | |
| The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text | |
| similarity scores. | |
| logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): | |
| The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image | |
| similarity scores. | |
| text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
| The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`]. | |
| image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
| The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`]. | |
| text_model_output(`BaseModelOutputWithPooling`): | |
| The output of the [`BlipTextModel`]. | |
| vision_model_output(`BaseModelOutputWithPooling`): | |
| The output of the [`BlipVisionModel`]. | |
| """ | |
| loss: Optional[torch.FloatTensor] = None | |
| logits_per_image: torch.FloatTensor = None | |
| logits_per_text: torch.FloatTensor = None | |
| text_embeds: torch.FloatTensor = None | |
| image_embeds: torch.FloatTensor = None | |
| text_model_output: BaseModelOutputWithPooling = None | |
| vision_model_output: BaseModelOutputWithPooling = None | |
| def to_tuple(self) -> Tuple[Any]: | |
| return tuple( | |
| self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() | |
| for k in self.keys() | |
| ) | |
| class BlipVisionEmbeddings(nn.Module): | |
| def __init__(self, config: BlipVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| self.embed_dim = config.hidden_size | |
| self.image_size = config.image_size | |
| self.patch_size = config.patch_size | |
| self.class_embedding = nn.Parameter( | |
| torch.randn(1, 1, self.embed_dim), | |
| ) | |
| self.patch_embedding = nn.Conv2d( | |
| in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size | |
| ) | |
| self.num_patches = (self.image_size // self.patch_size) ** 2 | |
| self.num_positions = self.num_patches + 1 | |
| self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) | |
| def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
| batch_size = pixel_values.shape[0] | |
| target_dtype = self.patch_embedding.weight.dtype | |
| patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] | |
| patch_embeds = patch_embeds.flatten(2).transpose(1, 2) | |
| class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) | |
| embeddings = torch.cat([class_embeds, patch_embeds], dim=1) | |
| embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype) | |
| return embeddings | |
| # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Blip | |
| class BlipTextEmbeddings(nn.Module): | |
| def __init__(self, config: BlipTextConfig): | |
| super().__init__() | |
| embed_dim = config.hidden_size | |
| self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) | |
| self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) | |
| # position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
| self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| ) -> torch.Tensor: | |
| seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] | |
| if position_ids is None: | |
| position_ids = self.position_ids[:, :seq_length] | |
| if inputs_embeds is None: | |
| inputs_embeds = self.token_embedding(input_ids) | |
| position_embeddings = self.position_embedding(position_ids) | |
| embeddings = inputs_embeds + position_embeddings | |
| return embeddings | |
| class BlipAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.embed_dim = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.embed_dim // self.num_heads | |
| if self.head_dim * self.num_heads != self.embed_dim: | |
| raise ValueError( | |
| f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
| f" {self.num_heads})." | |
| ) | |
| self.scale = self.head_dim**-0.5 | |
| self.dropout = nn.Dropout(config.attention_dropout) | |
| self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim) | |
| self.projection = nn.Linear(self.embed_dim, self.embed_dim) | |
| def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
| return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| """Input shape: Batch x Time x Channel""" | |
| bsz, tgt_len, embed_dim = hidden_states.size() | |
| mixed_qkv = self.qkv(hidden_states) | |
| mixed_qkv = ( | |
| self.qkv(hidden_states) | |
| .reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads) | |
| .permute(2, 0, 3, 1, 4) | |
| ) | |
| query_states, key_states, value_states = ( | |
| mixed_qkv[0], | |
| mixed_qkv[1], | |
| mixed_qkv[2], | |
| ) | |
| # Take the dot product between "query" and "key" to get the raw attention scores. | |
| attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) | |
| attention_scores = attention_scores * self.scale | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
| # This is actually dropping out entire tokens to attend to, which might | |
| # seem a bit unusual, but is taken from the original Transformer paper. | |
| attention_probs = self.dropout(attention_probs) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) | |
| new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,) | |
| context_layer = context_layer.reshape(new_context_layer_shape) | |
| output = self.projection(context_layer) | |
| outputs = (output, attention_probs) if output_attentions else (output, None) | |
| return outputs | |
| # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Blip | |
| class BlipMLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.activation_fn = ACT2FN[config.hidden_act] | |
| self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
| self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.fc1(hidden_states) | |
| hidden_states = self.activation_fn(hidden_states) | |
| hidden_states = self.fc2(hidden_states) | |
| return hidden_states | |
| class BlipEncoderLayer(nn.Module): | |
| def __init__(self, config: BlipConfig): | |
| super().__init__() | |
| self.embed_dim = config.hidden_size | |
| self.self_attn = BlipAttention(config) | |
| self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| self.mlp = BlipMLP(config) | |
| self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.FloatTensor]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| `(config.encoder_attention_heads,)`. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| """ | |
| residual = hidden_states | |
| hidden_states = self.layer_norm1(hidden_states) | |
| hidden_states, attn_weights = self.self_attn( | |
| hidden_states=hidden_states, | |
| head_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = hidden_states + residual | |
| residual = hidden_states | |
| hidden_states = self.layer_norm2(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = hidden_states + residual | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs | |
| class BlipPreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = BlipConfig | |
| base_model_prefix = "blip" | |
| supports_gradient_checkpointing = True | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def _init_weights(self, module): | |
| """Initialize the weights""" | |
| factor = self.config.initializer_range | |
| if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=factor) | |
| if hasattr(module, "bias") and module.bias is not None: | |
| module.bias.data.zero_() | |
| if isinstance(module, BlipVisionEmbeddings): | |
| if hasattr(self.config, "vision_config"): | |
| factor = self.config.vision_config.initializer_range | |
| nn.init.trunc_normal_( | |
| module.position_embedding, | |
| mean=0.0, | |
| std=factor, | |
| ) | |
| nn.init.trunc_normal_( | |
| module.class_embedding, | |
| mean=0.0, | |
| std=factor, | |
| ) | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| elif isinstance(module, nn.Linear) and module.bias is not None: | |
| module.bias.data.zero_() | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, BlipEncoder): | |
| module.gradient_checkpointing = value | |
| BLIP_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`BlipConfig`]): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| BLIP_TEXT_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.max_position_embeddings - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| BLIP_VISION_INPUTS_DOCSTRING = r""" | |
| Args: | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
| [`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| BLIP_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.max_position_embeddings - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
| [`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details. | |
| return_loss (`bool`, *optional*): | |
| Whether or not to return the contrastive loss. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class BlipEncoder(nn.Module): | |
| """ | |
| Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
| [`BlipEncoderLayer`]. | |
| Args: | |
| config (`BlipConfig`): | |
| The corresponding vision configuration for the `BlipEncoder`. | |
| """ | |
| def __init__(self, config: BlipConfig): | |
| super().__init__() | |
| self.config = config | |
| self.layers = nn.ModuleList([BlipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| inputs_embeds, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutput]: | |
| r""" | |
| Args: | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
| than the model's internal embedding lookup matrix. | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| encoder_states = () if output_hidden_states else None | |
| all_attentions = () if output_attentions else None | |
| hidden_states = inputs_embeds | |
| for idx, encoder_layer in enumerate(self.layers): | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(encoder_layer), | |
| hidden_states, | |
| attention_mask, | |
| ) | |
| else: | |
| layer_outputs = encoder_layer( | |
| hidden_states, | |
| attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1],) | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
| ) | |
| class BlipVisionModel(BlipPreTrainedModel): | |
| main_input_name = "pixel_values" | |
| config_class = BlipVisionConfig | |
| def __init__(self, config: BlipVisionConfig): | |
| super().__init__(config) | |
| self.config = config | |
| embed_dim = config.hidden_size | |
| self.embeddings = BlipVisionEmbeddings(config) | |
| self.patch_mask_generator = ViTPatchMaskGenerator(config.patch_size) | |
| self.encoder = BlipEncoder(config) | |
| self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
| self.post_init() | |
| def forward( | |
| self, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| pixel_masks: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if pixel_values is None: | |
| raise ValueError("You have to specify pixel_values") | |
| hidden_states = self.embeddings(pixel_values) | |
| B, N, D = hidden_states.shape | |
| # print('Before mask:', hidden_states.shape) | |
| if pixel_masks is not None: | |
| assert pixel_masks.shape[0] == 1 | |
| patch_masks = self.patch_mask_generator(pixel_masks) | |
| # print(patch_masks.shape) | |
| patch_masks = patch_masks.unsqueeze(-1).expand_as(hidden_states) | |
| hidden_states = hidden_states.masked_select(patch_masks).view(B, -1, D) | |
| # print('After mask:', hidden_states.shape) | |
| encoder_outputs = self.encoder( | |
| inputs_embeds=hidden_states, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| last_hidden_state = encoder_outputs[0] | |
| last_hidden_state = self.post_layernorm(last_hidden_state) | |
| pooled_output = last_hidden_state[:, 0, :] | |
| pooled_output = self.post_layernorm(pooled_output) | |
| if not return_dict: | |
| return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
| return BaseModelOutputWithPooling( | |
| last_hidden_state=last_hidden_state, | |
| pooler_output=pooled_output, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| def get_input_embeddings(self): | |
| return self.embeddings | |
| class BlipModel(BlipPreTrainedModel): | |
| config_class = BlipConfig | |
| def __init__(self, config: BlipConfig): | |
| super().__init__(config) | |
| if not isinstance(config.text_config, BlipTextConfig): | |
| raise ValueError( | |
| "config.text_config is expected to be of type BlipTextConfig but is of type" | |
| f" {type(config.text_config)}." | |
| ) | |
| if not isinstance(config.vision_config, BlipVisionConfig): | |
| raise ValueError( | |
| "config.vision_config is expected to be of type BlipVisionConfig but is of type" | |
| f" {type(config.vision_config)}." | |
| ) | |
| text_config = config.text_config | |
| vision_config = config.vision_config | |
| self.projection_dim = config.projection_dim | |
| self.text_embed_dim = text_config.hidden_size | |
| self.vision_embed_dim = vision_config.hidden_size | |
| self.text_model = BlipTextModel(text_config) | |
| self.vision_model = BlipVisionModel(vision_config) | |
| self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) | |
| self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) | |
| self.logit_scale = nn.Parameter(torch.ones([]) * self.config.logit_scale_init_value) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_text_features( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> torch.FloatTensor: | |
| r""" | |
| Returns: | |
| text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by | |
| applying the projection layer to the pooled output of [`BlipTextModel`]. | |
| Examples: | |
| ```python | |
| >>> from transformers import AutoProcessor, BlipModel | |
| >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") | |
| >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
| >>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") | |
| >>> text_features = model.get_text_features(**inputs) | |
| ```""" | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| text_outputs = self.text_model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = text_outputs[1] | |
| text_features = self.text_projection(pooled_output) | |
| return text_features | |
| def get_image_features( | |
| self, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> torch.FloatTensor: | |
| r""" | |
| Returns: | |
| image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by | |
| applying the projection layer to the pooled output of [`BlipVisionModel`]. | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, BlipModel | |
| >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") | |
| >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor(images=image, return_tensors="pt") | |
| >>> image_features = model.get_image_features(**inputs) | |
| ```""" | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = vision_outputs[1] # pooled_output | |
| image_features = self.visual_projection(pooled_output) | |
| return image_features | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| pixel_masks: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| return_loss: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BlipOutput]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, BlipModel | |
| >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") | |
| >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor( | |
| ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True | |
| ... ) | |
| >>> outputs = model(**inputs) | |
| >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score | |
| >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities | |
| ```""" | |
| # Use BLIP model's config for some fields (if specified) instead of those of vision & text components. | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| pixel_masks=pixel_masks, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| text_outputs = self.text_model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| image_embeds = vision_outputs[1] | |
| image_embeds = self.visual_projection(image_embeds) | |
| text_embeds = text_outputs[1] | |
| text_embeds = self.text_projection(text_embeds) | |
| # normalized features | |
| image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) | |
| text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) | |
| # cosine similarity as logits | |
| logit_scale = self.logit_scale.exp() | |
| logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale | |
| logits_per_image = logits_per_text.t() | |
| loss = None | |
| if return_loss: | |
| loss = blip_loss(logits_per_text) | |
| if not return_dict: | |
| output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) | |
| return ((loss,) + output) if loss is not None else output | |
| return BlipOutput( | |
| loss=loss, | |
| logits_per_image=logits_per_image, | |
| logits_per_text=logits_per_text, | |
| text_embeds=text_embeds, | |
| image_embeds=image_embeds, | |
| text_model_output=text_outputs, | |
| vision_model_output=vision_outputs, | |
| ) | |
| class BlipForConditionalGeneration(BlipPreTrainedModel): | |
| config_class = BlipConfig | |
| _keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"] | |
| main_input_name = "pixel_values" | |
| def __init__(self, config: BlipConfig): | |
| super().__init__(config) | |
| self.vision_model = BlipVisionModel(config.vision_config) | |
| self.text_decoder = BlipTextLMHeadModel(config.text_config) | |
| self.decoder_input_ids = config.text_config.bos_token_id | |
| self.decoder_pad_token_id = config.text_config.pad_token_id | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.vision_model.embeddings.patch_embedding | |
| def forward( | |
| self, | |
| pixel_values: torch.FloatTensor, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BlipForConditionalGenerationModelOutput]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, BlipForConditionalGeneration | |
| >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
| >>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> text = "A picture of" | |
| >>> inputs = processor(images=image, text=text, return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| ```""" | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| image_embeds = vision_outputs[0] | |
| outputs = self.text_decoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=image_embeds, | |
| labels=labels, | |
| return_dict=return_dict, | |
| reduction="mean", | |
| ) | |
| if not return_dict: | |
| outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:] | |
| return tuple(output for output in outputs if output is not None) | |
| return BlipForConditionalGenerationModelOutput( | |
| loss=outputs.loss, | |
| decoder_logits=outputs.logits, | |
| image_embeds=image_embeds, | |
| last_hidden_state=vision_outputs.last_hidden_state, | |
| hidden_states=vision_outputs.hidden_states, | |
| attentions=vision_outputs.attentions, | |
| ) | |
| def generate( | |
| self, | |
| pixel_values: torch.FloatTensor, | |
| pixel_masks: torch.Tensor = None, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| **generate_kwargs, | |
| ) -> torch.LongTensor: | |
| r""" | |
| Overrides *generate* function to be able to use the model as a conditional generator | |
| Parameters: | |
| pixel_values (*torch.FloatTensor* of shape *(batch_size, image_width, image_height)*: | |
| Input image to be processed | |
| input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): | |
| The sequence used as a prompt for the generation. | |
| attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, BlipForConditionalGeneration | |
| >>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
| >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor(images=image, return_tensors="pt") | |
| >>> outputs = model.generate(**inputs) | |
| >>> print(processor.decode(outputs[0], skip_special_tokens=True)) | |
| two cats are laying on a couch | |
| ``` | |
| """ | |
| batch_size = pixel_values.shape[0] | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| pixel_masks=pixel_masks, | |
| ) | |
| image_embeds = vision_outputs[0] | |
| image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device) | |
| if isinstance(input_ids, list): | |
| input_ids = torch.LongTensor(input_ids) | |
| elif input_ids is None: | |
| input_ids = ( | |
| torch.LongTensor([[self.decoder_input_ids, self.config.text_config.eos_token_id]]) | |
| .repeat(batch_size, 1) | |
| .to(image_embeds.device) | |
| ) | |
| input_ids[:, 0] = self.config.text_config.bos_token_id | |
| attention_mask = attention_mask[:, :-1] if attention_mask is not None else None | |
| outputs = self.text_decoder.generate( | |
| input_ids=input_ids[:, :-1], | |
| eos_token_id=self.config.text_config.sep_token_id, | |
| pad_token_id=self.config.text_config.pad_token_id, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=image_embeds, | |
| encoder_attention_mask=image_attention_mask, | |
| **generate_kwargs, | |
| ) | |
| return outputs | |
| class BlipForQuestionAnswering(BlipPreTrainedModel): | |
| config_class = BlipConfig | |
| _keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"] | |
| def __init__(self, config: BlipConfig): | |
| super().__init__(config) | |
| self.vision_model = BlipVisionModel(config.vision_config) | |
| self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False) | |
| self.text_decoder = BlipTextLMHeadModel(config.text_config) | |
| self.decoder_pad_token_id = config.text_config.pad_token_id | |
| self.decoder_start_token_id = config.text_config.bos_token_id | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.vision_model.embeddings.patch_embedding | |
| # Adapted from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right | |
| def _shift_right(self, input_ids): | |
| pad_token_id = self.decoder_pad_token_id | |
| shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
| shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
| shifted_input_ids[..., 0] = self.decoder_start_token_id | |
| # replace possible -100 values in labels by `pad_token_id` | |
| shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
| return shifted_input_ids | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor, | |
| pixel_values: torch.FloatTensor, | |
| decoder_input_ids: Optional[torch.LongTensor] = None, | |
| decoder_attention_mask: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BlipTextVisionModelOutput]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, BlipForQuestionAnswering | |
| >>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") | |
| >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> # training | |
| >>> text = "How many cats are in the picture?" | |
| >>> label = "2" | |
| >>> inputs = processor(images=image, text=text, return_tensors="pt") | |
| >>> labels = processor(text=label, return_tensors="pt").input_ids | |
| >>> inputs["labels"] = labels | |
| >>> outputs = model(**inputs) | |
| >>> loss = outputs.loss | |
| >>> loss.backward() | |
| >>> # inference | |
| >>> text = "How many cats are in the picture?" | |
| >>> inputs = processor(images=image, text=text, return_tensors="pt") | |
| >>> outputs = model.generate(**inputs) | |
| >>> print(processor.decode(outputs[0], skip_special_tokens=True)) | |
| 2 | |
| ```""" | |
| if labels is None and decoder_input_ids is None: | |
| raise ValueError( | |
| "Either `decoder_input_ids` or `labels` should be passed when calling `forward` with" | |
| " `BlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you" | |
| " are using the model for inference make sure that `decoder_input_ids` is passed or call `generate`" | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| image_embeds = vision_outputs[0] | |
| image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long) | |
| question_embeds = self.text_encoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=image_embeds, | |
| encoder_attention_mask=image_attention_mask, | |
| return_dict=return_dict, | |
| ) | |
| question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state | |
| if labels is not None and decoder_input_ids is None: | |
| # get decoder inputs from shifting lm labels to the right - this is used in training mode | |
| decoder_input_ids = self._shift_right(labels) | |
| # replace possible -100 values in labels by `pad_token_id` | |
| labels = labels.masked_fill(labels == self.decoder_pad_token_id, -100) | |
| answer_output = self.text_decoder( | |
| input_ids=decoder_input_ids, | |
| attention_mask=decoder_attention_mask, | |
| encoder_hidden_states=question_embeds, | |
| encoder_attention_mask=attention_mask, | |
| labels=labels, | |
| return_dict=return_dict, | |
| reduction="mean", | |
| ) | |
| if labels is not None: | |
| decoder_loss = answer_output.loss.mean() if return_dict else answer_output[0].mean() | |
| else: | |
| decoder_loss = None | |
| if not return_dict: | |
| outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:] | |
| return tuple(output for output in outputs if output is not None) | |
| return BlipTextVisionModelOutput( | |
| loss=decoder_loss, | |
| image_embeds=image_embeds, | |
| last_hidden_state=vision_outputs.last_hidden_state, | |
| hidden_states=vision_outputs.hidden_states, | |
| attentions=vision_outputs.attentions, | |
| ) | |
| def generate( | |
| self, | |
| input_ids: torch.LongTensor, | |
| pixel_values: torch.FloatTensor, | |
| pixel_masks: torch.Tensor = None, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| **generate_kwargs, | |
| ) -> torch.LongTensor: | |
| r""" | |
| Overrides *generate* function to be able to use the model as a conditional generator | |
| Parameters: | |
| input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*): | |
| The sequence used as a prompt for the generation. | |
| pixel_values (*torch.FloatTensor* of shape *(batch_size, image_width, image_height)*: | |
| Input image to be processed | |
| attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for | |
| tokens that are NOT MASKED, `0` for MASKED tokens. | |
| **generate_kwargs: | |
| Additional arguments passed to the *generate* function of the decoder | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, BlipForQuestionAnswering | |
| >>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") | |
| >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> text = "How many cats are in the picture?" | |
| >>> inputs = processor(images=image, text=text, return_tensors="pt") | |
| >>> outputs = model.generate(**inputs) | |
| >>> print(processor.decode(outputs[0], skip_special_tokens=True)) | |
| 2 | |
| ``` | |
| """ | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| pixel_masks=pixel_masks | |
| ) | |
| image_embeds = vision_outputs[0] | |
| image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device) | |
| if isinstance(input_ids, list): | |
| input_ids = torch.LongTensor(input_ids) | |
| question_outputs = self.text_encoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=image_embeds, | |
| encoder_attention_mask=image_attention_mask, | |
| return_dict=False, | |
| ) | |
| question_embeds = question_outputs[0] | |
| question_attention_mask = torch.ones(question_embeds.size()[:-1], dtype=torch.long).to(question_embeds.device) | |
| bos_ids = torch.full( | |
| (question_embeds.size(0), 1), fill_value=self.decoder_start_token_id, device=question_embeds.device | |
| ) | |
| outputs = self.text_decoder.generate( | |
| input_ids=bos_ids, | |
| eos_token_id=self.config.text_config.sep_token_id, | |
| pad_token_id=self.config.text_config.pad_token_id, | |
| encoder_hidden_states=question_embeds, | |
| encoder_attention_mask=question_attention_mask, | |
| **generate_kwargs, | |
| ) | |
| return outputs | |
| class BlipForImageTextRetrieval(BlipPreTrainedModel): | |
| config_class = BlipConfig | |
| def __init__(self, config: BlipConfig): | |
| super().__init__(config) | |
| self.vision_model = BlipVisionModel(config.vision_config) | |
| self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False) | |
| # vision projection layer | |
| self.vision_proj = nn.Linear(config.vision_config.hidden_size, config.image_text_hidden_size) | |
| # text projection layer | |
| self.text_proj = nn.Linear(config.text_config.hidden_size, config.image_text_hidden_size) | |
| # image text matching head | |
| self.itm_head = nn.Linear(config.text_config.hidden_size, 2) | |
| self.decoder_pad_token_id = ( | |
| config.text_config.pad_token_id | |
| if not hasattr(config, "decoder_pad_token_id") | |
| else config.decoder_pad_token_id | |
| ) | |
| self.decoder_start_token_id = ( | |
| config.text_config.bos_token_id | |
| if not hasattr(config, "decoder_start_token_id") | |
| else config.decoder_start_token_id | |
| ) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.vision_model.embeddings.patch_embedding | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor, | |
| pixel_values: torch.FloatTensor, | |
| use_itm_head: Optional[bool] = True, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BlipTextVisionModelOutput]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, BlipForImageTextRetrieval | |
| >>> model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco") | |
| >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> text = "an image of a cat" | |
| >>> inputs = processor(images=image, text=text, return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| ``` | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| image_embeds = vision_outputs[0] | |
| image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long) | |
| if use_itm_head: | |
| question_embeds = self.text_encoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=image_embeds, | |
| encoder_attention_mask=image_atts, | |
| return_dict=return_dict, | |
| ) | |
| question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state | |
| output = self.itm_head(question_embeds[:, 0, :]) | |
| else: | |
| question_embeds = self.text_encoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| return_dict=return_dict, | |
| ) | |
| question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state | |
| image_feat = normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1) | |
| text_feat = normalize(self.text_proj(question_embeds[:, 0, :]), dim=-1) | |
| output = image_feat @ text_feat.t() | |
| if not return_dict: | |
| outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,) | |
| return tuple(output for output in outputs if output is not None) | |
| return BlipImageTextMatchingModelOutput( | |
| itm_score=output, | |
| last_hidden_state=vision_outputs.last_hidden_state, | |
| hidden_states=vision_outputs.hidden_states, | |
| attentions=vision_outputs.attentions, | |
| question_embeds=question_embeds, | |
| ) | |