Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| from options.test_options import TestOptions | |
| from data import create_dataset | |
| from models import create_model | |
| from util.visualizer import save_images | |
| from itertools import islice | |
| from util import html | |
| import cv2 | |
| seed = 10 | |
| import torch | |
| import numpy as np | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed(seed) | |
| np.random.seed(seed) | |
| # options | |
| opt = TestOptions().parse() | |
| opt.num_threads = 1 # test code only supports num_threads=1 | |
| opt.batch_size = 1 # test code only supports batch_size=1 | |
| opt.serial_batches = True # no shuffle | |
| model = create_model(opt) | |
| model.setup(opt) | |
| model.eval() | |
| print('Loading model %s' % opt.model) | |
| testdata = ['manga_paper'] | |
| # fake_sty = model.get_z_random(1, 64, truncation=True) | |
| opt.dataset_mode = 'singleSr' | |
| for folder in testdata: | |
| opt.folder = folder | |
| # create dataset | |
| dataset = create_dataset(opt) | |
| web_dir = os.path.join(opt.results_dir, opt.folder + '_Sr2Co') | |
| webpage = html.HTML(web_dir, 'Training = %s, Phase = %s, Class =%s' % (opt.name, opt.phase, opt.name)) | |
| # fake_sty = model.get_z_random(1, 64, truncation=True) | |
| for i, data in enumerate(islice(dataset, opt.num_test)): | |
| h = data['h'] | |
| w = data['w'] | |
| model.set_input(data) | |
| fake_sty = model.get_z_random(1, 64, truncation=True, tvalue=1.25) | |
| fake_B, SCR, line = model.forward(AtoB=False, sty=fake_sty) | |
| images=[fake_B[:,:,:h,:w]] | |
| names=['color'] | |
| img_path = 'input_%3.3d' % i | |
| save_images(webpage, images, names, img_path, aspect_ratio=opt.aspect_ratio, width=opt.crop_size) | |
| webpage.save() | |
| testdata = ['western_paper'] | |
| opt.dataset_mode = 'singleCo' | |
| for folder in testdata: | |
| opt.folder = folder | |
| # create dataset | |
| dataset = create_dataset(opt) | |
| web_dir = os.path.join(opt.results_dir, opt.folder + '_Sr2Co') | |
| webpage = html.HTML(web_dir, 'Training = %s, Phase = %s, Class =%s' % (opt.name, opt.phase, opt.name)) | |
| for i, data in enumerate(islice(dataset, opt.num_test)): | |
| h = data['h'] | |
| w = data['w'] | |
| model.set_input(data) | |
| fake_B, fake_B2, SCR = model.forward(AtoB=True) | |
| images=[fake_B2[:,:,:h,:w]] | |
| names=['manga'] | |
| img_path = 'input_%3.3d' % i | |
| save_images(webpage, images, names, img_path, aspect_ratio=opt.aspect_ratio, width=opt.crop_size) | |
| webpage.save() | |