Spaces:
Runtime error
Runtime error
| # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py | |
| import logging | |
| from dataclasses import dataclass | |
| from typing import Any, Dict, Optional | |
| import torch | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.models import ModelMixin | |
| from diffusers.models.attention import AdaLayerNorm, Attention, FeedForward | |
| from diffusers.utils import BaseOutput | |
| from diffusers.utils.torch_utils import maybe_allow_in_graph | |
| from einops import rearrange, repeat | |
| from torch import Tensor, nn | |
| logger = logging.getLogger(__name__) | |
| class Transformer3DModelOutput(BaseOutput): | |
| sample: torch.FloatTensor | |
| class Transformer3DModel(ModelMixin, ConfigMixin): | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 88, | |
| in_channels: Optional[int] = None, | |
| num_layers: int = 1, | |
| dropout: float = 0.0, | |
| norm_num_groups: int = 32, | |
| cross_attention_dim: Optional[int] = None, | |
| attention_bias: bool = False, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| upcast_attention: bool = False, | |
| unet_use_cross_frame_attention=None, | |
| unet_use_temporal_attention=None, | |
| ): | |
| super().__init__() | |
| self.use_linear_projection = use_linear_projection | |
| self.num_attention_heads = num_attention_heads | |
| self.attention_head_dim = attention_head_dim | |
| inner_dim = num_attention_heads * attention_head_dim | |
| # Define input layers | |
| self.in_channels = in_channels | |
| self.norm = torch.nn.GroupNorm( | |
| num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True | |
| ) | |
| if use_linear_projection: | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| else: | |
| self.proj_in = nn.Conv2d( | |
| in_channels, inner_dim, kernel_size=1, stride=1, padding=0 | |
| ) | |
| # Define transformers blocks | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| unet_use_cross_frame_attention=unet_use_cross_frame_attention, | |
| unet_use_temporal_attention=unet_use_temporal_attention, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| # 4. Define output layers | |
| if use_linear_projection: | |
| self.proj_out = nn.Linear(in_channels, inner_dim) | |
| else: | |
| self.proj_out = nn.Conv2d( | |
| inner_dim, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| timestep: Optional[torch.LongTensor] = None, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| ): | |
| # validate input dim | |
| if hidden_states.dim() != 5: | |
| raise ValueError( | |
| f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
| ) | |
| # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
| # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
| # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
| # expects mask of shape: | |
| # [batch, key_tokens] | |
| # adds singleton query_tokens dimension: | |
| # [batch, 1, key_tokens] | |
| # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
| # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
| # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
| if attention_mask is not None and attention_mask.ndim == 2: | |
| # assume that mask is expressed as: | |
| # (1 = keep, 0 = discard) | |
| # convert mask into a bias that can be added to attention scores: | |
| # (keep = +0, discard = -10000.0) | |
| attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # convert encoder_attention_mask to a bias the same way we do for attention_mask | |
| if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: | |
| encoder_attention_mask = ( | |
| 1 - encoder_attention_mask.to(hidden_states.dtype) | |
| ) * -10000.0 | |
| encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
| # shenanigans for motion module | |
| video_length = hidden_states.shape[2] | |
| hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
| encoder_hidden_states = repeat( | |
| encoder_hidden_states, "b n c -> (b f) n c", f=video_length | |
| ) | |
| # 1. Input | |
| batch, _, height, width = hidden_states.shape | |
| residual = hidden_states | |
| hidden_states = self.norm(hidden_states) | |
| if not self.use_linear_projection: | |
| hidden_states = self.proj_in(hidden_states) | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( | |
| batch, height * width, inner_dim | |
| ) | |
| else: | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( | |
| batch, height * width, inner_dim | |
| ) | |
| hidden_states = self.proj_in(hidden_states) | |
| # 2. Blocks | |
| for block in self.transformer_blocks: | |
| hidden_states = block( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| timestep=timestep, | |
| video_length=video_length, | |
| encoder_attention_mask=encoder_attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| # 3. Output | |
| if not self.use_linear_projection: | |
| hidden_states = ( | |
| hidden_states.reshape(batch, height, width, inner_dim) | |
| .permute(0, 3, 1, 2) | |
| .contiguous() | |
| ) | |
| hidden_states = self.proj_out(hidden_states) | |
| else: | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = ( | |
| hidden_states.reshape(batch, height, width, inner_dim) | |
| .permute(0, 3, 1, 2) | |
| .contiguous() | |
| ) | |
| output = hidden_states + residual | |
| output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer3DModelOutput(sample=output) | |
| class BasicTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| dropout: float = 0.0, | |
| cross_attention_dim: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| attention_bias: bool = False, | |
| only_cross_attention: bool = False, | |
| upcast_attention: bool = False, | |
| norm_elementwise_affine: bool = True, | |
| unet_use_cross_frame_attention: bool = False, | |
| unet_use_temporal_attention: bool = False, | |
| final_dropout: bool = False, | |
| ): | |
| super().__init__() | |
| self.only_cross_attention = only_cross_attention | |
| self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
| self.unet_use_cross_frame_attention = unet_use_cross_frame_attention | |
| self.unet_use_temporal_attention = unet_use_temporal_attention | |
| # Define 3 blocks. Each block has its own normalization layer. | |
| # Self-Attn / SC-Attn | |
| if self.use_ada_layer_norm: | |
| self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
| else: | |
| self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
| if unet_use_cross_frame_attention: | |
| # this isn't actually implemented anywhere in the AnimateDiff codebase or in Diffusers... | |
| raise NotImplementedError("SC-Attn is not implemented yet.") | |
| else: | |
| self.attn1 = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=( | |
| cross_attention_dim if only_cross_attention else None | |
| ), | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| ) | |
| # 2. Cross-Attn | |
| if cross_attention_dim is not None: | |
| self.norm2 = ( | |
| AdaLayerNorm(dim, num_embeds_ada_norm) | |
| if self.use_ada_layer_norm | |
| else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
| ) | |
| self.attn2 = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| ) # is self-attn if encoder_hidden_states is none | |
| else: | |
| self.norm2 = None | |
| self.attn2 = None | |
| # 3. Feed-forward | |
| self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
| self.ff = FeedForward( | |
| dim, | |
| dropout=dropout, | |
| activation_fn=activation_fn, | |
| final_dropout=final_dropout, | |
| ) | |
| # 4. Temporal Attn | |
| assert unet_use_temporal_attention is not None | |
| if unet_use_temporal_attention: | |
| self.attn_temp = Attention( | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| ) | |
| nn.init.zeros_(self.attn_temp.to_out[0].weight.data) | |
| if self.use_ada_layer_norm: | |
| self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
| else: | |
| self.norm1 = nn.LayerNorm( | |
| dim, elementwise_affine=norm_elementwise_affine | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| timestep: Optional[torch.LongTensor] = None, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| video_length=None, | |
| ): | |
| # SparseCausal-Attention | |
| # Notice that normalization is always applied before the real computation in the following blocks. | |
| # 1. Self-Attention | |
| if self.use_ada_layer_norm: | |
| norm_hidden_states = self.norm1(hidden_states, timestep) | |
| else: | |
| norm_hidden_states = self.norm1(hidden_states) | |
| cross_attention_kwargs = ( | |
| cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
| ) | |
| if self.unet_use_cross_frame_attention: | |
| cross_attention_kwargs["video_length"] = video_length | |
| attn_output = self.attn1( | |
| norm_hidden_states, | |
| encoder_hidden_states=( | |
| encoder_hidden_states if self.only_cross_attention else None | |
| ), | |
| attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| # 2. Cross-Attention | |
| if self.attn2 is not None: | |
| norm_hidden_states = ( | |
| self.norm2(hidden_states, timestep) | |
| if self.use_ada_layer_norm | |
| else self.norm2(hidden_states) | |
| ) | |
| attn_output = self.attn2( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| # 3. Feed-forward | |
| hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
| # 4. Temporal-Attention | |
| if self.unet_use_temporal_attention: | |
| d = hidden_states.shape[1] | |
| hidden_states = rearrange( | |
| hidden_states, "(b f) d c -> (b d) f c", f=video_length | |
| ) | |
| norm_hidden_states = ( | |
| self.norm_temp(hidden_states, timestep) | |
| if self.use_ada_layer_norm | |
| else self.norm_temp(hidden_states) | |
| ) | |
| hidden_states = self.attn_temp(norm_hidden_states) + hidden_states | |
| hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
| return hidden_states | |
| hidden_states = attn_output + hidden_states | |
| # 2. Cross-Attention | |
| if self.attn2 is not None: | |
| norm_hidden_states = ( | |
| self.norm2(hidden_states, timestep) | |
| if self.use_ada_layer_norm | |
| else self.norm2(hidden_states) | |
| ) | |
| attn_output = self.attn2( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| # 3. Feed-forward | |
| hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
| # 4. Temporal-Attention | |
| if self.unet_use_temporal_attention: | |
| d = hidden_states.shape[1] | |
| hidden_states = rearrange( | |
| hidden_states, "(b f) d c -> (b d) f c", f=video_length | |
| ) | |
| norm_hidden_states = ( | |
| self.norm_temp(hidden_states, timestep) | |
| if self.use_ada_layer_norm | |
| else self.norm_temp(hidden_states) | |
| ) | |
| hidden_states = self.attn_temp(norm_hidden_states) + hidden_states | |
| hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
| return hidden_states | |