Update app.py
Browse files
app.py
CHANGED
|
@@ -78,11 +78,11 @@ transforms = GOSNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
|
| 78 |
def predict(image):
|
| 79 |
H,W = image.shape[:2]
|
| 80 |
depth = DAMV2.infer_image(image)
|
| 81 |
-
image =
|
| 82 |
-
depth =
|
| 83 |
-
image = torch.
|
|
|
|
| 84 |
image = transforms(image).unsqueeze(0)
|
| 85 |
-
depth = torch.from_numpy(depth).unsqueeze(0).unsqueeze(0)/255
|
| 86 |
DIS_map = model.inference(image.to(device),depth.to(device))[0][0][0].cpu()
|
| 87 |
DIS_map = cv2.resize(np.array(DIS_map), (W,H))
|
| 88 |
# return cv2.resize(np.array(depth[0][0]), (W,H))
|
|
|
|
| 78 |
def predict(image):
|
| 79 |
H,W = image.shape[:2]
|
| 80 |
depth = DAMV2.infer_image(image)
|
| 81 |
+
image = torch.nn.functional.interpolate(torch.from_numpy(image).permute(2,0,1)[None,...],size=[1024,1024],mode='bilinear',align_corners=True)[0]
|
| 82 |
+
depth = torch.nn.functional.interpolate(torch.from_numpy(depth)[None,None,...],size=[1024,1024],mode='bilinear',align_corners=True)
|
| 83 |
+
image = torch.divide(image,255.0)
|
| 84 |
+
depth = torch.divide(depth,255.0)
|
| 85 |
image = transforms(image).unsqueeze(0)
|
|
|
|
| 86 |
DIS_map = model.inference(image.to(device),depth.to(device))[0][0][0].cpu()
|
| 87 |
DIS_map = cv2.resize(np.array(DIS_map), (W,H))
|
| 88 |
# return cv2.resize(np.array(depth[0][0]), (W,H))
|