Update models/PDFNet.py
Browse files- models/PDFNet.py +0 -67
models/PDFNet.py
CHANGED
|
@@ -61,26 +61,6 @@ class PDF_depth_decoder(nn.Module):
|
|
| 61 |
|
| 62 |
return [final_output,side_1,side_2,side_3,side_4]
|
| 63 |
|
| 64 |
-
class CoA(nn.Module):
|
| 65 |
-
def __init__(self, emb_dim=128):
|
| 66 |
-
super(CoA, self).__init__()
|
| 67 |
-
self.Att = nn.MultiheadAttention(emb_dim,1,bias=False,batch_first=True,dropout=0.1)
|
| 68 |
-
self.Normq = RMSNorm(emb_dim,data_format='channels_last')
|
| 69 |
-
self.Normkv = RMSNorm(emb_dim,data_format='channels_last')
|
| 70 |
-
self.drop1 = nn.Dropout(0.1)
|
| 71 |
-
self.FFN = SwiGLU(emb_dim,emb_dim)
|
| 72 |
-
self.Norm2 = RMSNorm(emb_dim,data_format='channels_last')
|
| 73 |
-
self.drop2 = nn.Dropout(0.1)
|
| 74 |
-
|
| 75 |
-
def forward(self,q,kv):
|
| 76 |
-
res = q
|
| 77 |
-
KV_feature = self.Att(self.Normq(q), self.Normkv(kv), self.Normkv(kv))[0]
|
| 78 |
-
KV_feature = self.drop1(KV_feature) + res
|
| 79 |
-
res = KV_feature
|
| 80 |
-
KV_feature = self.FFN(self.Norm2(KV_feature))
|
| 81 |
-
KV_feature = self.drop2(KV_feature) + res
|
| 82 |
-
return KV_feature
|
| 83 |
-
|
| 84 |
class CoA(nn.Module):
|
| 85 |
def __init__(self, emb_dim=128):
|
| 86 |
super(CoA, self).__init__()
|
|
@@ -223,53 +203,6 @@ class FSE(nn.Module):
|
|
| 223 |
|
| 224 |
return img_feature + rearrange(img_cs, 'b (h w) c -> b c h w',h=img_H), depth_feature + depth_cs, patch_feature + patch_cs
|
| 225 |
|
| 226 |
-
# def forward(self,img,depth,patch,last_pred):
|
| 227 |
-
# boundary,integrity = self.BIS(last_pred)
|
| 228 |
-
# # img = img * _upsample_like(last_pred.sigmoid(),img)
|
| 229 |
-
# # depth = depth * _upsample_like(last_pred.sigmoid(),depth)
|
| 230 |
-
# # patch = patch * _upsample_like(last_pred.sigmoid(),patch)
|
| 231 |
-
# pi,pd,pp = self.pool_ratio
|
| 232 |
-
# B,C,img_H,img_W = img.size()
|
| 233 |
-
# img_cs = self.I_channelswich(img* (1+_upsample_like(integrity,depth)))
|
| 234 |
-
# pool_img_cs = F.adaptive_avg_pool2d(img_cs,output_size=[img_H//pi,img_W//pi])
|
| 235 |
-
# # img_cs = rearrange(img_cs, 'b c h w -> b (h w) c')
|
| 236 |
-
# pool_img_cs = rearrange(pool_img_cs, 'b c h w -> b (h w) c')
|
| 237 |
-
# B,C,depth_H,depth_W = depth.size()
|
| 238 |
-
|
| 239 |
-
# #give depth the integrity prior
|
| 240 |
-
# enhance_depth = depth * _upsample_like(last_pred.sigmoid(),depth)
|
| 241 |
-
# depth_cs = self.D_channelswich(enhance_depth)
|
| 242 |
-
# pool_depth_cs = F.adaptive_avg_pool2d(depth_cs,output_size=[depth_H//pd,depth_W//pd])
|
| 243 |
-
# depth_cs = rearrange(depth_cs, 'b c h w -> b (h w) c')
|
| 244 |
-
# pool_depth_cs = rearrange(pool_depth_cs, 'b c h w -> b (h w) c')
|
| 245 |
-
# B,C,patch_H,patch_W = patch.size()
|
| 246 |
-
|
| 247 |
-
# #select the boundary patches to select patches
|
| 248 |
-
# patch_batch = self.split(patch,patch_ratio=self.patch_ratio)
|
| 249 |
-
# boundary_batch = self.split(boundary,patch_ratio=self.patch_ratio)
|
| 250 |
-
# boundary_score = boundary_batch.mean(dim=[2,3])[...,None,None]
|
| 251 |
-
# select_patch = patch_batch * (1+(boundary_score>0).float())
|
| 252 |
-
# select_patch = self.merge(select_patch,batch_size=B)
|
| 253 |
-
|
| 254 |
-
# patch_cs = self.P_channelswich(select_patch)
|
| 255 |
-
# pool_patch_cs = F.adaptive_avg_pool2d(patch_cs,output_size=[patch_H//pp,patch_W//pp])
|
| 256 |
-
# pool_patch_cs = rearrange(pool_patch_cs, 'b c h w -> b (h w) c')
|
| 257 |
-
|
| 258 |
-
# patch_feature = self.PI(pool_patch_cs, torch.cat([pool_img_cs,pool_depth_cs],dim=1))
|
| 259 |
-
# depth_feature = self.IP(depth_cs,patch_feature)
|
| 260 |
-
|
| 261 |
-
# img_feature = self.DI(pool_img_cs, torch.cat([pool_img_cs,pool_patch_cs],dim=1))
|
| 262 |
-
# depth_feature = self.ID(depth_feature,img_feature)
|
| 263 |
-
|
| 264 |
-
# patch_feature = rearrange(patch_feature, 'b (h w) c -> b c h w',h=patch_H//pp)
|
| 265 |
-
# depth_feature = rearrange(depth_feature, 'b (h w) c -> b c h w',h=depth_H)
|
| 266 |
-
# img_feature = rearrange(img_feature, 'b (h w) c -> b c h w',h=img_H//pi)
|
| 267 |
-
|
| 268 |
-
# img_feature = _upsample_like(img_feature,img)
|
| 269 |
-
# patch_feature = _upsample_like(patch_feature,patch)
|
| 270 |
-
|
| 271 |
-
# return img_feature + img_cs, depth_feature + rearrange(depth_cs, 'b (h w) c -> b c h w',h=depth_H), patch_feature + patch_cs
|
| 272 |
-
|
| 273 |
class PDF_decoder(nn.Module):
|
| 274 |
def __init__(self, args,raw_ch=3,out_ch=1):
|
| 275 |
super(PDF_decoder, self).__init__()
|
|
|
|
| 61 |
|
| 62 |
return [final_output,side_1,side_2,side_3,side_4]
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
class CoA(nn.Module):
|
| 65 |
def __init__(self, emb_dim=128):
|
| 66 |
super(CoA, self).__init__()
|
|
|
|
| 203 |
|
| 204 |
return img_feature + rearrange(img_cs, 'b (h w) c -> b c h w',h=img_H), depth_feature + depth_cs, patch_feature + patch_cs
|
| 205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
class PDF_decoder(nn.Module):
|
| 207 |
def __init__(self, args,raw_ch=3,out_ch=1):
|
| 208 |
super(PDF_decoder, self).__init__()
|