Spaces:
Sleeping
Sleeping
File size: 10,448 Bytes
71797a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
#!/usr/bin/env python3
"""
Analyze existing submissions to determine if sentence-level categorization is worth implementing.
This script:
1. Segments submissions into sentences
2. Categorizes each sentence using current AI model
3. Compares sentence-level vs submission-level categories
4. Shows statistics to inform decision
Run: python analyze_submissions_for_sentences.py
"""
import sys
import os
import re
from collections import Counter, defaultdict
from app import create_app, db
from app.models.models import Submission
from app.analyzer import get_analyzer
import nltk
# Try to download required NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
print("Downloading NLTK punkt tokenizer...")
nltk.download('punkt', quiet=True)
def segment_sentences(text):
"""Simple sentence segmentation"""
try:
from nltk.tokenize import sent_tokenize
sentences = sent_tokenize(text)
except:
# Fallback: regex-based
pattern = r'(?<=[.!?])\s+(?=[A-Z])|(?<=[.!?])$'
sentences = re.split(pattern, text)
# Clean and filter
sentences = [s.strip() for s in sentences if s.strip()]
# Filter very short "sentences"
sentences = [s for s in sentences if len(s.split()) >= 3]
return sentences
def analyze_submissions():
"""Analyze submissions to see if sentence-level categorization is beneficial"""
app = create_app()
with app.app_context():
# Get all analyzed submissions
submissions = Submission.query.filter(Submission.category != None).all()
if not submissions:
print("β No analyzed submissions found. Please run AI analysis first.")
return
print(f"\n{'='*70}")
print(f"π SENTENCE-LEVEL CATEGORIZATION ANALYSIS")
print(f"{'='*70}\n")
print(f"Analyzing {len(submissions)} submissions...\n")
# Load analyzer
analyzer = get_analyzer()
# Statistics
total_submissions = len(submissions)
total_sentences = 0
multi_sentence_count = 0
multi_category_count = 0
sentence_counts = []
category_changes = []
submission_details = []
# Analyze each submission
for submission in submissions:
# Segment into sentences
sentences = segment_sentences(submission.message)
sentence_count = len(sentences)
total_sentences += sentence_count
sentence_counts.append(sentence_count)
if sentence_count > 1:
multi_sentence_count += 1
# Categorize each sentence
sentence_categories = []
for sentence in sentences:
try:
category = analyzer.analyze(sentence)
sentence_categories.append(category)
except Exception as e:
print(f"Error analyzing sentence: {e}")
sentence_categories.append(None)
# Check if categories differ
unique_categories = set([c for c in sentence_categories if c])
if len(unique_categories) > 1:
multi_category_count += 1
category_changes.append({
'id': submission.id,
'text': submission.message,
'submission_category': submission.category,
'sentence_categories': sentence_categories,
'sentences': sentences,
'contributor_type': submission.contributor_type
})
# Print Statistics
print(f"{'β'*70}")
print(f"π STATISTICS")
print(f"{'β'*70}\n")
print(f"Total Submissions: {total_submissions}")
print(f"Total Sentences: {total_sentences}")
print(f"Avg Sentences/Submission: {total_sentences/total_submissions:.1f}")
print(f"Multi-sentence (>1): {multi_sentence_count} ({multi_sentence_count/total_submissions*100:.1f}%)")
print(f"Multi-category: {multi_category_count} ({multi_category_count/total_submissions*100:.1f}%)")
# Sentence distribution
print(f"\nπ Sentence Count Distribution:")
sentence_dist = Counter(sentence_counts)
for count in sorted(sentence_dist.keys()):
bar = 'β' * int(sentence_dist[count] / total_submissions * 50)
print(f" {count} sentence(s): {sentence_dist[count]:3d} {bar}")
# Category changes
if category_changes:
print(f"\n{'β'*70}")
print(f"π SUBMISSIONS WITH MULTIPLE CATEGORIES ({len(category_changes)})")
print(f"{'β'*70}\n")
for idx, item in enumerate(category_changes[:10], 1): # Show first 10
print(f"\n{idx}. Submission #{item['id']} ({item['contributor_type']})")
print(f" Submission-level: {item['submission_category']}")
print(f" Text: \"{item['text'][:100]}{'...' if len(item['text']) > 100 else ''}\"")
print(f" Sentence breakdown:")
for i, (sentence, category) in enumerate(zip(item['sentences'], item['sentence_categories']), 1):
marker = "β οΈ" if category != item['submission_category'] else "β"
print(f" {marker} S{i} [{category:12s}] \"{sentence[:60]}{'...' if len(sentence) > 60 else ''}\"")
if len(category_changes) > 10:
print(f"\n ... and {len(category_changes) - 10} more")
# Category distribution comparison
print(f"\n{'β'*70}")
print(f"π CATEGORY DISTRIBUTION COMPARISON")
print(f"{'β'*70}\n")
# Submission-level counts
submission_cats = Counter([s.category for s in submissions if s.category])
# Sentence-level counts
sentence_cats = Counter()
for item in category_changes:
for cat in item['sentence_categories']:
if cat:
sentence_cats[cat] += 1
print(f"{'Category':<15} {'Submission-Level':<20} {'Sentence-Level (multi-cat only)':<30}")
print(f"{'-'*15} {'-'*20} {'-'*30}")
categories = ['Vision', 'Problem', 'Objectives', 'Directives', 'Values', 'Actions']
for cat in categories:
sub_count = submission_cats.get(cat, 0)
sen_count = sentence_cats.get(cat, 0)
sub_bar = 'β' * int(sub_count / total_submissions * 20)
sen_bar = 'β' * int(sen_count / multi_category_count * 20) if multi_category_count > 0 else ''
print(f"{cat:<15} {sub_count:3d} {sub_bar:<15} {sen_count:3d} {sen_bar:<15}")
# Recommendation
print(f"\n{'='*70}")
print(f"π‘ RECOMMENDATION")
print(f"{'='*70}\n")
multi_cat_percentage = (multi_category_count / total_submissions * 100) if total_submissions > 0 else 0
if multi_cat_percentage > 40:
print(f"β
STRONGLY RECOMMEND sentence-level categorization")
print(f" {multi_cat_percentage:.1f}% of submissions contain multiple categories.")
print(f" Current system is losing significant semantic detail.")
print(f"\n π Expected benefits:")
print(f" β’ {multi_category_count} submissions will have richer categorization")
print(f" β’ Training data will be ~{total_sentences - total_submissions} examples richer")
print(f" β’ Analytics will be more accurate")
elif multi_cat_percentage > 20:
print(f"β οΈ RECOMMEND sentence-level categorization (or proof of concept)")
print(f" {multi_cat_percentage:.1f}% of submissions contain multiple categories.")
print(f" Moderate benefit expected.")
print(f"\n π‘ Suggestion: Start with proof of concept (display only)")
print(f" Then decide if full implementation is worth it.")
else:
print(f"βΉοΈ OPTIONAL - Multi-label might be sufficient")
print(f" Only {multi_cat_percentage:.1f}% of submissions contain multiple categories.")
print(f" Sentence-level might be overkill.")
print(f"\n π‘ Consider:")
print(f" β’ Multi-label classification (simpler)")
print(f" β’ Or keep current system if working well")
# Implementation effort
print(f"\nπ Implementation Effort:")
print(f" β’ Full sentence-level: 13-20 hours")
print(f" β’ Proof of concept: 4-6 hours")
print(f" β’ Multi-label: 4-6 hours")
print(f"\n{'='*70}\n")
# Export detailed results
export_path = "sentence_analysis_results.txt"
with open(export_path, 'w') as f:
f.write("DETAILED SENTENCE-LEVEL ANALYSIS RESULTS\n")
f.write("="*70 + "\n\n")
f.write(f"Total Submissions: {total_submissions}\n")
f.write(f"Multi-category Submissions: {multi_category_count} ({multi_cat_percentage:.1f}%)\n\n")
f.write("\nDETAILED BREAKDOWN:\n\n")
for idx, item in enumerate(category_changes, 1):
f.write(f"\n{idx}. Submission #{item['id']}\n")
f.write(f" Contributor: {item['contributor_type']}\n")
f.write(f" Submission Category: {item['submission_category']}\n")
f.write(f" Full Text: {item['text']}\n")
f.write(f" Sentences:\n")
for i, (sentence, category) in enumerate(zip(item['sentences'], item['sentence_categories']), 1):
f.write(f" {i}. [{category}] {sentence}\n")
f.write("\n")
print(f"π Detailed results exported to: {export_path}")
if __name__ == '__main__':
try:
analyze_submissions()
except Exception as e:
print(f"\nβ Error: {e}")
import traceback
traceback.print_exc()
sys.exit(1)
|