Spaces:
Sleeping
Sleeping
File size: 73,837 Bytes
23654e5 316fc26 23654e5 dfe9748 23654e5 1377fb1 23654e5 1377fb1 23654e5 00aacad 23654e5 f037336 00aacad f037336 af68c84 f037336 af68c84 f037336 00aacad f037336 00aacad f037336 00aacad 23654e5 f037336 23654e5 f037336 23654e5 f037336 23654e5 00aacad 23654e5 dfe9748 f037336 dfe9748 f037336 dfe9748 f037336 af68c84 f037336 af68c84 f037336 dfe9748 f037336 dfe9748 f037336 dfe9748 f037336 dfe9748 f037336 dfe9748 f037336 dfe9748 f037336 dfe9748 23654e5 47ac3f3 23654e5 47ac3f3 23654e5 d038974 23654e5 2aae812 19ce9e8 2aae812 19ce9e8 2aae812 19ce9e8 2aae812 23654e5 316fc26 23654e5 e60b22c 23654e5 316fc26 23654e5 316fc26 23654e5 e60b22c 23654e5 316fc26 23654e5 19ce9e8 23654e5 d038974 23654e5 d038974 23654e5 19ce9e8 23654e5 19ce9e8 23654e5 2fe24d3 d038974 2fe24d3 19ce9e8 00aacad 19ce9e8 e6341fe 00aacad e6341fe 00aacad e6341fe 1377fb1 e6341fe b08ba59 e6341fe 00aacad e6341fe 00aacad e6341fe 1377fb1 00aacad 1377fb1 e6341fe 1377fb1 e6341fe 00aacad e6341fe 00aacad e6341fe 1377fb1 00aacad 1377fb1 00aacad 1377fb1 00aacad 1377fb1 00aacad 1377fb1 00aacad 1377fb1 00aacad 1377fb1 00aacad 1377fb1 00aacad 1377fb1 b08ba59 1377fb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 |
from flask import Blueprint, render_template, request, redirect, url_for, session, flash, jsonify, send_file
from app.models.models import Token, Submission, Settings, TrainingExample, FineTuningRun, SubmissionSentence
from app import db
from app.analyzer import get_analyzer
from app.utils.pdf_export import DashboardPDFExporter
from functools import wraps
from typing import Dict
import json
import csv
import io
from datetime import datetime
import os
import logging
logger = logging.getLogger(__name__)
bp = Blueprint('admin', __name__, url_prefix='/admin')
CONTRIBUTOR_TYPES = [
{'value': 'government', 'label': 'Government Officer', 'description': 'Public sector representatives'},
{'value': 'community', 'label': 'Community Member', 'description': 'Local residents and community leaders'},
{'value': 'industry', 'label': 'Industry Representative', 'description': 'Business and industry stakeholders'},
{'value': 'ngo', 'label': 'NGO/Non-Profit', 'description': 'Civil society organizations'},
{'value': 'academic', 'label': 'Academic/Researcher', 'description': 'Universities and research institutions'},
{'value': 'other', 'label': 'Other Stakeholder', 'description': 'Other interested parties'}
]
CATEGORIES = ['Vision', 'Problem', 'Objectives', 'Directives', 'Values', 'Actions']
def admin_required(f):
@wraps(f)
def decorated_function(*args, **kwargs):
if 'token' not in session or session.get('type') != 'admin':
return redirect(url_for('auth.login'))
return f(*args, **kwargs)
return decorated_function
@bp.route('/overview')
@admin_required
def overview():
total_submissions = Submission.query.count()
total_tokens = Token.query.filter(Token.type != 'admin').count()
flagged_count = Submission.query.filter_by(flagged_as_offensive=True).count()
unanalyzed_count = Submission.query.filter_by(category=None).count()
submission_open = Settings.get_setting('submission_open', 'true') == 'true'
token_generation_enabled = Settings.get_setting('token_generation_enabled', 'true') == 'true'
analyzed = Submission.query.filter(Submission.category != None).count() > 0
return render_template('admin/overview.html',
total_submissions=total_submissions,
total_tokens=total_tokens,
flagged_count=flagged_count,
unanalyzed_count=unanalyzed_count,
submission_open=submission_open,
token_generation_enabled=token_generation_enabled,
analyzed=analyzed)
@bp.route('/registration')
@admin_required
def registration():
token_generation_enabled = Settings.get_setting('token_generation_enabled', 'true') == 'true'
recent_tokens = Token.query.filter(Token.type != 'admin').order_by(Token.created_at.desc()).limit(10).all()
registration_url = request.host_url.rstrip('/') + url_for('auth.generate')
return render_template('admin/registration.html',
token_generation_enabled=token_generation_enabled,
recent_tokens=recent_tokens,
registration_url=registration_url)
@bp.route('/tokens')
@admin_required
def tokens():
all_tokens = Token.query.all()
return render_template('admin/tokens.html',
tokens=all_tokens,
contributor_types=CONTRIBUTOR_TYPES)
@bp.route('/submissions')
@admin_required
def submissions():
category_filter = request.args.get('category', 'all')
flagged_only = request.args.get('flagged', 'false') == 'true'
query = Submission.query
if category_filter != 'all':
query = query.filter_by(category=category_filter)
if flagged_only:
query = query.filter_by(flagged_as_offensive=True)
all_submissions = query.order_by(Submission.timestamp.desc()).all()
flagged_count = Submission.query.filter_by(flagged_as_offensive=True).count()
analyzed = Submission.query.filter(Submission.category != None).count() > 0
return render_template('admin/submissions.html',
submissions=all_submissions,
categories=CATEGORIES,
category_filter=category_filter,
flagged_only=flagged_only,
flagged_count=flagged_count,
analyzed=analyzed)
@bp.route('/dashboard')
@admin_required
def dashboard():
# Check if analyzed
analyzed = Submission.query.filter(Submission.category != None).count() > 0
if not analyzed:
flash('Please analyze submissions first', 'warning')
return redirect(url_for('admin.overview'))
# Get view mode from query param ('submissions' or 'sentences')
view_mode = request.args.get('mode', 'submissions')
# Contributor stats (unchanged - always submission-based)
contributor_stats = db.session.query(
Submission.contributor_type,
db.func.count(Submission.id)
).group_by(Submission.contributor_type).all()
# MODE DEPENDENT: Data changes based on sentence vs submission view
if view_mode == 'sentences':
# SENTENCE-LEVEL VIEW
# Get all sentences with categories joined with their parent submissions
sentences_query = db.session.query(SubmissionSentence, Submission).join(
Submission
).filter(
SubmissionSentence.category != None
).all()
# Create enhanced sentence objects with submission data
sentences = []
for sentence, submission in sentences_query:
# Create object with both sentence and submission attributes
class EnhancedSentence:
def __init__(self, sentence, submission):
self.id = sentence.id
self.text = sentence.text
self.message = sentence.text # For template compatibility
self.category = sentence.category
self.confidence = sentence.confidence
self.contributor_type = submission.contributor_type
self.timestamp = submission.timestamp
self.latitude = submission.latitude
self.longitude = submission.longitude
self.submission_id = submission.id
sentences.append(EnhancedSentence(sentence, submission))
# Category stats
category_stats = db.session.query(
SubmissionSentence.category,
db.func.count(SubmissionSentence.id)
).filter(SubmissionSentence.category != None).group_by(SubmissionSentence.category).all()
# Breakdown by contributor (via parent submission)
breakdown = {}
for cat in CATEGORIES:
breakdown[cat] = {}
for ctype in CONTRIBUTOR_TYPES:
count = db.session.query(db.func.count(SubmissionSentence.id)).join(
Submission
).filter(
SubmissionSentence.category == cat,
Submission.contributor_type == ctype['value']
).scalar()
breakdown[cat][ctype['value']] = count
# Geotagged sentences (inherit location from parent submission)
geotagged_items = db.session.query(SubmissionSentence, Submission).join(
Submission
).filter(
Submission.latitude != None,
Submission.longitude != None,
SubmissionSentence.category != None
).all()
# Create sentence objects with location data
geotagged_data = []
for sentence, submission in geotagged_items:
# Create a pseudo-object that has both sentence and location data
class SentenceWithLocation:
def __init__(self, sentence, submission):
self.id = sentence.id
self.text = sentence.text
self.category = sentence.category
self.latitude = submission.latitude
self.longitude = submission.longitude
self.contributor_type = submission.contributor_type
self.timestamp = submission.timestamp
self.message = sentence.text # For compatibility
geotagged_data.append(SentenceWithLocation(sentence, submission))
# Items for contributions list (sentences)
items_by_category = sentences
else:
# SUBMISSION-LEVEL VIEW (default)
# Get all submissions with categories
submissions = Submission.query.filter(Submission.category != None).all()
# Category stats
category_stats = db.session.query(
Submission.category,
db.func.count(Submission.id)
).filter(Submission.category != None).group_by(Submission.category).all()
# Breakdown by contributor type
breakdown = {}
for cat in CATEGORIES:
breakdown[cat] = {}
for ctype in CONTRIBUTOR_TYPES:
count = Submission.query.filter_by(
category=cat,
contributor_type=ctype['value']
).count()
breakdown[cat][ctype['value']] = count
# Geotagged submissions
geotagged_data = Submission.query.filter(
Submission.latitude != None,
Submission.longitude != None,
Submission.category != None
).all()
# Items for contributions list (submissions)
items_by_category = submissions
return render_template('admin/dashboard.html',
items=items_by_category,
contributor_stats=contributor_stats,
category_stats=category_stats,
geotagged_items=geotagged_data,
categories=CATEGORIES,
contributor_types=CONTRIBUTOR_TYPES,
breakdown=breakdown,
view_mode=view_mode)
@bp.route('/dashboard/export-pdf')
@admin_required
def export_dashboard_pdf():
"""Export dashboard data as PDF based on view mode"""
try:
# Get view mode
view_mode = request.args.get('mode', 'submissions')
# Contributor stats
contributor_stats = db.session.query(
Submission.contributor_type,
db.func.count(Submission.id)
).group_by(Submission.contributor_type).all()
# MODE DEPENDENT: Same logic as dashboard
if view_mode == 'sentences':
# SENTENCE-LEVEL VIEW
# Get all sentences with categories joined with their parent submissions
sentences_query = db.session.query(SubmissionSentence, Submission).join(
Submission
).filter(
SubmissionSentence.category != None
).all()
# Create enhanced sentence objects with submission data
sentences = []
for sentence, submission in sentences_query:
class EnhancedSentence:
def __init__(self, sentence, submission):
self.id = sentence.id
self.text = sentence.text
self.message = sentence.text # For template compatibility
self.category = sentence.category
self.confidence = sentence.confidence
self.contributor_type = submission.contributor_type
self.timestamp = submission.timestamp
self.latitude = submission.latitude
self.longitude = submission.longitude
self.submission_id = submission.id
sentences.append(EnhancedSentence(sentence, submission))
# Category stats
category_stats = db.session.query(
SubmissionSentence.category,
db.func.count(SubmissionSentence.id)
).filter(SubmissionSentence.category != None).group_by(SubmissionSentence.category).all()
# Breakdown by contributor
breakdown = {}
for cat in CATEGORIES:
breakdown[cat] = {}
for ctype in CONTRIBUTOR_TYPES:
count = db.session.query(db.func.count(SubmissionSentence.id)).join(
Submission
).filter(
SubmissionSentence.category == cat,
Submission.contributor_type == ctype['value']
).scalar()
breakdown[cat][ctype['value']] = count
# Geotagged sentences (inherit location from parent submission)
geotagged_items = db.session.query(SubmissionSentence, Submission).join(
Submission
).filter(
Submission.latitude != None,
Submission.longitude != None,
SubmissionSentence.category != None
).all()
# Create sentence objects with location data
geotagged_data = []
for sentence, submission in geotagged_items:
class SentenceWithLocation:
def __init__(self, sentence, submission):
self.id = sentence.id
self.text = sentence.text
self.category = sentence.category
self.latitude = submission.latitude
self.longitude = submission.longitude
self.contributor_type = submission.contributor_type
self.timestamp = submission.timestamp
self.message = sentence.text
geotagged_data.append(SentenceWithLocation(sentence, submission))
# Items for contributions list
items_list = sentences
else:
# SUBMISSION-LEVEL VIEW
# Get all submissions with categories
submissions = Submission.query.filter(Submission.category != None).all()
# Category stats
category_stats = db.session.query(
Submission.category,
db.func.count(Submission.id)
).filter(Submission.category != None).group_by(Submission.category).all()
# Breakdown by contributor
breakdown = {}
for cat in CATEGORIES:
breakdown[cat] = {}
for ctype in CONTRIBUTOR_TYPES:
count = Submission.query.filter_by(
category=cat,
contributor_type=ctype['value']
).count()
breakdown[cat][ctype['value']] = count
# Geotagged submissions
geotagged_data = Submission.query.filter(
Submission.latitude != None,
Submission.longitude != None,
Submission.category != None
).all()
# Items for contributions list
items_list = submissions
# Prepare data for PDF
pdf_data = {
'submissions': items_list, # Can be sentences or submissions
'category_stats': category_stats,
'contributor_stats': contributor_stats,
'breakdown': breakdown,
'geotagged_submissions': geotagged_data,
'view_mode': view_mode,
'categories': CATEGORIES,
'contributor_types': CONTRIBUTOR_TYPES
}
# Generate PDF
buffer = io.BytesIO()
exporter = DashboardPDFExporter()
exporter.generate_pdf(buffer, pdf_data)
buffer.seek(0)
# Generate filename
mode_label = "sentence" if view_mode == 'sentences' else "submission"
filename = f"dashboard_{mode_label}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.pdf"
return send_file(
buffer,
mimetype='application/pdf',
as_attachment=True,
download_name=filename
)
except Exception as e:
logger.error(f"Error exporting dashboard PDF: {str(e)}")
flash(f'Error exporting PDF: {str(e)}', 'danger')
return redirect(url_for('admin.dashboard'))
# API Endpoints
@bp.route('/api/toggle-submissions', methods=['POST'])
@admin_required
def toggle_submissions():
current = Settings.get_setting('submission_open', 'true')
new_value = 'false' if current == 'true' else 'true'
Settings.set_setting('submission_open', new_value)
return jsonify({'success': True, 'submission_open': new_value == 'true'})
@bp.route('/api/toggle-token-generation', methods=['POST'])
@admin_required
def toggle_token_generation():
current = Settings.get_setting('token_generation_enabled', 'true')
new_value = 'false' if current == 'true' else 'true'
Settings.set_setting('token_generation_enabled', new_value)
return jsonify({'success': True, 'token_generation_enabled': new_value == 'true'})
@bp.route('/api/create-token', methods=['POST'])
@admin_required
def create_token():
data = request.json
contributor_type = data.get('type')
name = data.get('name', '').strip()
# Allow 'admin' type in addition to contributor types
valid_types = [t['value'] for t in CONTRIBUTOR_TYPES] + ['admin']
if not contributor_type or contributor_type not in valid_types:
return jsonify({'success': False, 'error': 'Invalid contributor type'}), 400
import random
import string
prefix = contributor_type[:3].upper()
random_part = ''.join(random.choices(string.ascii_uppercase + string.digits, k=6))
timestamp_part = str(int(datetime.now().timestamp()))[-4:]
token_str = f"{prefix}-{random_part}{timestamp_part}"
# Default name based on type
if contributor_type == 'admin':
final_name = name if name else "Administrator"
else:
final_name = name if name else f"{contributor_type.capitalize()} User"
new_token = Token(
token=token_str,
type=contributor_type,
name=final_name
)
db.session.add(new_token)
db.session.commit()
return jsonify({'success': True, 'token': new_token.to_dict()})
@bp.route('/api/delete-token/<int:token_id>', methods=['DELETE'])
@admin_required
def delete_token(token_id):
token = Token.query.get_or_404(token_id)
# Prevent deletion of admin tokens (any token with type='admin')
if token.type == 'admin':
return jsonify({'success': False, 'error': 'Cannot delete admin token'}), 400
db.session.delete(token)
db.session.commit()
return jsonify({'success': True})
@bp.route('/api/update-category/<int:submission_id>', methods=['POST'])
@admin_required
def update_category(submission_id):
try:
submission = Submission.query.get_or_404(submission_id)
data = request.json
category = data.get('category')
confidence = data.get('confidence') # Optional: frontend can pass prediction confidence
# Store original category before change
original_category = submission.category
# Convert empty string to None
if category == '' or category == 'null':
category = None
# Validate category if not None
if category and category not in CATEGORIES:
return jsonify({'success': False, 'error': f'Invalid category: {category}'}), 400
# Create training example if admin is making a correction or confirmation
if category is not None: # Only track when assigning a category
# Check if training example already exists for this submission
existing_example = TrainingExample.query.filter_by(submission_id=submission_id).first()
if existing_example:
# Update existing example
existing_example.original_category = original_category
existing_example.corrected_category = category
existing_example.correction_timestamp = datetime.utcnow()
existing_example.confidence_score = confidence
else:
# Create new training example
training_example = TrainingExample(
submission_id=submission_id,
message=submission.message,
original_category=original_category,
corrected_category=category,
contributor_type=submission.contributor_type,
confidence_score=confidence
)
db.session.add(training_example)
# Update submission category
submission.category = category
db.session.commit()
return jsonify({'success': True, 'category': category})
except Exception as e:
db.session.rollback()
print(f"Error updating category: {str(e)}")
return jsonify({'success': False, 'error': str(e)}), 500
@bp.route('/api/update-sentence-category/<int:sentence_id>', methods=['POST'])
@admin_required
def update_sentence_category(sentence_id):
"""Update category for a specific sentence"""
try:
sentence = SubmissionSentence.query.get_or_404(sentence_id)
data = request.json
new_category = data.get('category')
# Store original
original_category = sentence.category
# Validate category
if new_category and new_category not in CATEGORIES:
return jsonify({'success': False, 'error': f'Invalid category: {new_category}'}), 400
# Update sentence
sentence.category = new_category
# Create/update training example for this sentence
if new_category:
existing = TrainingExample.query.filter_by(sentence_id=sentence_id).first()
if existing:
existing.original_category = original_category
existing.corrected_category = new_category
existing.correction_timestamp = datetime.utcnow()
else:
training_example = TrainingExample(
sentence_id=sentence_id,
submission_id=sentence.submission_id,
message=sentence.text, # Just the sentence text
original_category=original_category,
corrected_category=new_category,
contributor_type=sentence.submission.contributor_type
)
db.session.add(training_example)
# Update parent submission's primary category (recalculate from sentences)
submission = sentence.submission
submission.category = submission.get_primary_category()
db.session.commit()
return jsonify({'success': True, 'category': new_category})
except Exception as e:
db.session.rollback()
logger.error(f"Error updating sentence category: {str(e)}")
return jsonify({'success': False, 'error': str(e)}), 500
@bp.route('/api/toggle-flag/<int:submission_id>', methods=['POST'])
@admin_required
def toggle_flag(submission_id):
submission = Submission.query.get_or_404(submission_id)
submission.flagged_as_offensive = not submission.flagged_as_offensive
db.session.commit()
return jsonify({'success': True, 'flagged': submission.flagged_as_offensive})
@bp.route('/api/delete-submission/<int:submission_id>', methods=['DELETE'])
@admin_required
def delete_submission(submission_id):
submission = Submission.query.get_or_404(submission_id)
db.session.delete(submission)
db.session.commit()
return jsonify({'success': True})
@bp.route('/api/analyze', methods=['POST'])
@admin_required
def analyze_submissions():
import time
from sqlalchemy.exc import OperationalError
data = request.json
analyze_all = data.get('analyze_all', False)
use_sentences = data.get('use_sentences', True) # NEW: sentence-level flag (default: True)
# Get submissions to analyze
if analyze_all:
to_analyze = Submission.query.all()
else:
# For sentence-level, look for submissions without sentence analysis
if use_sentences:
to_analyze = Submission.query.filter_by(sentence_analysis_done=False).all()
else:
to_analyze = Submission.query.filter_by(category=None).all()
if not to_analyze:
return jsonify({'success': False, 'error': 'No submissions to analyze'}), 400
# Get the analyzer instance
analyzer = get_analyzer()
success_count = 0
error_count = 0
batch_size = 10 # Commit every 10 submissions to reduce lock time
for idx, submission in enumerate(to_analyze):
max_retries = 3
retry_delay = 1 # seconds
for attempt in range(max_retries):
try:
if use_sentences:
# NEW: Sentence-level analysis
sentence_results = analyzer.analyze_with_sentences(submission.message)
# Optimized DELETE: Use synchronize_session=False for better performance
SubmissionSentence.query.filter_by(submission_id=submission.id).delete(synchronize_session=False)
# Create new sentence records
for sent_idx, result in enumerate(sentence_results):
sentence = SubmissionSentence(
submission_id=submission.id,
sentence_index=sent_idx,
text=result['text'],
category=result['category'],
confidence=result.get('confidence')
)
db.session.add(sentence)
submission.sentence_analysis_done = True
# Set primary category for backward compatibility
submission.category = submission.get_primary_category()
logger.info(f"Analyzed submission {submission.id} into {len(sentence_results)} sentences")
else:
# OLD: Submission-level analysis (backward compatible)
category = analyzer.analyze(submission.message)
submission.category = category
success_count += 1
# Commit in batches to reduce lock duration
if (idx + 1) % batch_size == 0:
db.session.commit()
logger.info(f"Committed batch of {batch_size} submissions")
break # Success, exit retry loop
except OperationalError as e:
# Database locked error - retry with exponential backoff
if 'database is locked' in str(e) and attempt < max_retries - 1:
db.session.rollback()
wait_time = retry_delay * (2 ** attempt) # Exponential backoff
logger.warning(f"Database locked for submission {submission.id}, retrying in {wait_time}s (attempt {attempt + 1}/{max_retries})")
time.sleep(wait_time)
continue
else:
# Max retries reached or different error
db.session.rollback()
logger.error(f"Error analyzing submission {submission.id}: {e}")
error_count += 1
break
except Exception as e:
db.session.rollback()
logger.error(f"Error analyzing submission {submission.id}: {e}")
error_count += 1
break
# Final commit for remaining items
try:
db.session.commit()
logger.info(f"Final commit completed")
except Exception as e:
db.session.rollback()
logger.error(f"Error in final commit: {e}")
return jsonify({
'success': True,
'analyzed': success_count,
'errors': error_count,
'sentence_level': use_sentences
})
@bp.route('/export/json')
@admin_required
def export_json():
data = {
'tokens': [t.to_dict() for t in Token.query.all()],
'submissions': [s.to_dict() for s in Submission.query.all()],
'trainingExamples': [ex.to_dict() for ex in TrainingExample.query.all()],
'submissionOpen': Settings.get_setting('submission_open', 'true') == 'true',
'tokenGenerationEnabled': Settings.get_setting('token_generation_enabled', 'true') == 'true',
'exportDate': datetime.utcnow().isoformat()
}
json_str = json.dumps(data, indent=2)
buffer = io.BytesIO()
buffer.write(json_str.encode('utf-8'))
buffer.seek(0)
return send_file(
buffer,
mimetype='application/json',
as_attachment=True,
download_name=f'participatory-planning-{datetime.now().strftime("%Y-%m-%d")}.json'
)
@bp.route('/export/csv')
@admin_required
def export_csv():
submissions = Submission.query.all()
output = io.StringIO()
writer = csv.writer(output)
# Header
writer.writerow(['Timestamp', 'Contributor Type', 'Category', 'Message', 'Latitude', 'Longitude', 'Flagged'])
# Rows
for s in submissions:
writer.writerow([
s.timestamp.isoformat() if s.timestamp else '',
s.contributor_type,
s.category or 'Not analyzed',
s.message,
s.latitude or '',
s.longitude or '',
'Yes' if s.flagged_as_offensive else 'No'
])
buffer = io.BytesIO()
buffer.write(output.getvalue().encode('utf-8'))
buffer.seek(0)
return send_file(
buffer,
mimetype='text/csv',
as_attachment=True,
download_name=f'contributions-{datetime.now().strftime("%Y-%m-%d")}.csv'
)
@bp.route('/import', methods=['POST'])
@admin_required
def import_data():
if 'file' not in request.files:
return jsonify({'success': False, 'error': 'No file uploaded'}), 400
file = request.files['file']
if file.filename == '':
return jsonify({'success': False, 'error': 'No file selected'}), 400
try:
data = json.load(file)
# Clear existing data (except admin token)
Submission.query.delete()
Token.query.filter(Token.type != 'admin').delete()
# Import tokens
for token_data in data.get('tokens', []):
if token_data.get('type') != 'admin': # Skip admin token as it already exists
token = Token(
token=token_data['token'],
type=token_data['type'],
name=token_data['name']
)
db.session.add(token)
# Import submissions
for sub_data in data.get('submissions', []):
location = sub_data.get('location')
submission = Submission(
message=sub_data['message'],
contributor_type=sub_data['contributorType'],
latitude=location['lat'] if location else None,
longitude=location['lng'] if location else None,
timestamp=datetime.fromisoformat(sub_data['timestamp']) if sub_data.get('timestamp') else datetime.utcnow(),
category=sub_data.get('category'),
flagged_as_offensive=sub_data.get('flaggedAsOffensive', False)
)
db.session.add(submission)
# Import training examples if present
training_examples_imported = 0
for ex_data in data.get('trainingExamples', []):
# Find corresponding submission by message (or create placeholder)
submission = Submission.query.filter_by(message=ex_data['message']).first()
if submission:
training_example = TrainingExample(
submission_id=submission.id,
message=ex_data['message'],
original_category=ex_data.get('original_category'),
corrected_category=ex_data['corrected_category'],
contributor_type=ex_data['contributor_type'],
correction_timestamp=datetime.fromisoformat(ex_data['correction_timestamp']) if ex_data.get('correction_timestamp') else datetime.utcnow(),
confidence_score=ex_data.get('confidence_score'),
used_in_training=ex_data.get('used_in_training', False)
)
db.session.add(training_example)
training_examples_imported += 1
# Import settings
Settings.set_setting('submission_open', 'true' if data.get('submissionOpen', True) else 'false')
Settings.set_setting('token_generation_enabled', 'true' if data.get('tokenGenerationEnabled', True) else 'false')
db.session.commit()
return jsonify({
'success': True,
'training_examples_imported': training_examples_imported
})
except Exception as e:
db.session.rollback()
return jsonify({'success': False, 'error': str(e)}), 500
@bp.route('/api/clear-all-data', methods=['POST'])
@admin_required
def clear_all_data():
"""Clear all submissions and tokens (except admin)"""
try:
# Delete all submissions
Submission.query.delete()
# Delete all tokens except admin
Token.query.filter(Token.type != 'admin').delete()
# Optionally reset settings to defaults
Settings.set_setting('submission_open', 'true')
Settings.set_setting('token_generation_enabled', 'true')
db.session.commit()
return jsonify({'success': True, 'message': 'All data cleared successfully'})
except Exception as e:
db.session.rollback()
return jsonify({'success': False, 'error': str(e)}), 500
# ============================================================================
# FINE-TUNING & TRAINING DATA ENDPOINTS
# ============================================================================
@bp.route('/training')
@admin_required
def training_dashboard():
"""Display the fine-tuning training dashboard"""
# Get training statistics
total_examples = TrainingExample.query.count()
corrections_count = TrainingExample.query.filter(
TrainingExample.original_category != TrainingExample.corrected_category
).count()
confirmations_count = total_examples - corrections_count
# Category distribution
from sqlalchemy import func
category_distribution = db.session.query(
TrainingExample.corrected_category,
func.count(TrainingExample.id)
).group_by(TrainingExample.corrected_category).all()
category_stats = {cat: 0 for cat in CATEGORIES}
for cat, count in category_distribution:
if cat in category_stats:
category_stats[cat] = count
# Get all training runs
training_runs = FineTuningRun.query.order_by(FineTuningRun.created_at.desc()).all()
# Get active model
active_model = FineTuningRun.query.filter_by(is_active_model=True).first()
# Fine-tuning settings
min_training_examples = int(Settings.get_setting('min_training_examples', '20'))
fine_tuning_enabled = Settings.get_setting('fine_tuning_enabled', 'true') == 'true'
return render_template('admin/training.html',
total_examples=total_examples,
corrections_count=corrections_count,
confirmations_count=confirmations_count,
category_stats=category_stats,
categories=CATEGORIES,
training_runs=training_runs,
active_model=active_model,
min_training_examples=min_training_examples,
fine_tuning_enabled=fine_tuning_enabled,
ready_to_train=total_examples >= min_training_examples)
@bp.route('/api/training-stats', methods=['GET'])
@admin_required
def get_training_stats():
"""Get training data statistics (API endpoint)"""
total_examples = TrainingExample.query.count()
corrections_count = TrainingExample.query.filter(
TrainingExample.original_category != TrainingExample.corrected_category
).count()
# Category distribution
from sqlalchemy import func
category_distribution = db.session.query(
TrainingExample.corrected_category,
func.count(TrainingExample.id)
).group_by(TrainingExample.corrected_category).all()
category_stats = {cat: 0 for cat in CATEGORIES}
for cat, count in category_distribution:
if cat in category_stats:
category_stats[cat] = count
# Check for data quality issues
duplicates = db.session.query(
TrainingExample.message,
func.count(TrainingExample.id)
).group_by(TrainingExample.message).having(func.count(TrainingExample.id) > 1).count()
min_examples = int(Settings.get_setting('min_training_examples', '20'))
min_per_category = min(category_stats.values()) if category_stats.values() else 0
return jsonify({
'total_examples': total_examples,
'corrections_count': corrections_count,
'confirmations_count': total_examples - corrections_count,
'category_stats': category_stats,
'duplicates_count': duplicates,
'min_examples_threshold': min_examples,
'min_examples_per_category': min_per_category,
'ready_to_train': total_examples >= min_examples and min_per_category >= 2
})
@bp.route('/api/training-examples', methods=['GET'])
@admin_required
def get_training_examples():
"""Get all training examples"""
page = request.args.get('page', 1, type=int)
per_page = request.args.get('per_page', 50, type=int)
category_filter = request.args.get('category', 'all')
corrections_only = request.args.get('corrections_only', 'false') == 'true'
query = TrainingExample.query
if category_filter != 'all':
query = query.filter_by(corrected_category=category_filter)
if corrections_only:
query = query.filter(TrainingExample.original_category != TrainingExample.corrected_category)
query = query.order_by(TrainingExample.correction_timestamp.desc())
pagination = query.paginate(page=page, per_page=per_page, error_out=False)
return jsonify({
'examples': [ex.to_dict() for ex in pagination.items],
'total': pagination.total,
'pages': pagination.pages,
'current_page': page
})
@bp.route('/api/training-example/<int:example_id>', methods=['DELETE'])
@admin_required
def delete_training_example(example_id):
"""Delete a training example"""
try:
example = TrainingExample.query.get_or_404(example_id)
# Don't allow deleting if already used in training
if example.used_in_training:
return jsonify({
'success': False,
'error': 'Cannot delete example already used in training run'
}), 400
db.session.delete(example)
db.session.commit()
return jsonify({'success': True})
except Exception as e:
db.session.rollback()
return jsonify({'success': False, 'error': str(e)}), 500
@bp.route('/api/export-training-examples', methods=['GET'])
@admin_required
def export_training_examples():
"""Export all training examples as JSON"""
try:
# Get filter parameters
sentence_level_only = request.args.get('sentence_level_only', 'false') == 'true'
# Query examples
query = TrainingExample.query
if sentence_level_only:
query = query.filter(TrainingExample.sentence_id != None)
examples = query.all()
# Export data
export_data = {
'exported_at': datetime.utcnow().isoformat(),
'total_examples': len(examples),
'sentence_level_only': sentence_level_only,
'examples': [
{
'message': ex.message,
'original_category': ex.original_category,
'corrected_category': ex.corrected_category,
'contributor_type': ex.contributor_type,
'correction_timestamp': ex.correction_timestamp.isoformat() if ex.correction_timestamp else None,
'confidence_score': ex.confidence_score,
'is_sentence_level': ex.sentence_id is not None
}
for ex in examples
]
}
# Return as downloadable JSON file
response = jsonify(export_data)
response.headers['Content-Disposition'] = f'attachment; filename=training_examples_{datetime.utcnow().strftime("%Y%m%d_%H%M%S")}.json'
response.headers['Content-Type'] = 'application/json'
return response
except Exception as e:
return jsonify({'success': False, 'error': str(e)}), 500
@bp.route('/api/import-training-examples', methods=['POST'])
@admin_required
def import_training_examples():
"""Import training examples from JSON file"""
try:
# Get JSON data from request
data = request.get_json()
if not data or 'examples' not in data:
return jsonify({
'success': False,
'error': 'Invalid import data. Expected JSON with "examples" array.'
}), 400
examples_data = data['examples']
imported_count = 0
skipped_count = 0
for ex_data in examples_data:
# Check if example already exists (by message and category)
existing = TrainingExample.query.filter_by(
message=ex_data['message'],
corrected_category=ex_data['corrected_category']
).first()
if existing:
skipped_count += 1
continue
# Create new training example
training_example = TrainingExample(
message=ex_data['message'],
original_category=ex_data.get('original_category'),
corrected_category=ex_data['corrected_category'],
contributor_type=ex_data.get('contributor_type', 'unknown'),
correction_timestamp=datetime.fromisoformat(ex_data['correction_timestamp']) if ex_data.get('correction_timestamp') else datetime.utcnow(),
confidence_score=ex_data.get('confidence_score'),
used_in_training=False
)
db.session.add(training_example)
imported_count += 1
db.session.commit()
return jsonify({
'success': True,
'imported': imported_count,
'skipped': skipped_count,
'total_in_file': len(examples_data)
})
except Exception as e:
db.session.rollback()
return jsonify({'success': False, 'error': str(e)}), 500
@bp.route('/api/clear-training-examples', methods=['POST'])
@admin_required
def clear_training_examples():
"""Clear all training examples (with options)"""
try:
data = request.get_json() or {}
# Options
clear_unused_only = data.get('unused_only', False)
sentence_level_only = data.get('sentence_level_only', False)
# Build query
query = TrainingExample.query
if clear_unused_only:
query = query.filter_by(used_in_training=False)
if sentence_level_only:
query = query.filter(TrainingExample.sentence_id != None)
# Count before delete
count = query.count()
# Delete
query.delete()
db.session.commit()
return jsonify({
'success': True,
'deleted': count,
'unused_only': clear_unused_only,
'sentence_level_only': sentence_level_only
})
except Exception as e:
db.session.rollback()
return jsonify({'success': False, 'error': str(e)}), 500
@bp.route('/import-training-dataset', methods=['POST'])
@admin_required
def import_training_dataset():
"""Import standalone training dataset (just training examples, not full session)"""
if 'file' not in request.files:
return jsonify({'success': False, 'error': 'No file uploaded'}), 400
file = request.files['file']
if file.filename == '':
return jsonify({'success': False, 'error': 'No file selected'}), 400
try:
data = json.load(file)
# Support both formats: array of examples or object with 'trainingExamples' key
training_data = data if isinstance(data, list) else data.get('trainingExamples', [])
imported_count = 0
for ex_data in training_data:
# Check if training example already exists (by message)
existing = TrainingExample.query.filter_by(message=ex_data['message']).first()
if existing:
# Update existing example
existing.original_category = ex_data.get('original_category')
existing.corrected_category = ex_data['corrected_category']
existing.contributor_type = ex_data.get('contributor_type', 'other')
existing.correction_timestamp = datetime.utcnow()
existing.confidence_score = ex_data.get('confidence_score')
else:
# Create placeholder submission if needed
submission = Submission.query.filter_by(message=ex_data['message']).first()
if not submission:
# Create placeholder submission for this training example
submission = Submission(
message=ex_data['message'],
contributor_type=ex_data.get('contributor_type', 'other'),
category=ex_data.get('corrected_category'),
timestamp=datetime.utcnow()
)
db.session.add(submission)
db.session.flush() # Get submission ID
# Create new training example
training_example = TrainingExample(
submission_id=submission.id,
message=ex_data['message'],
original_category=ex_data.get('original_category'),
corrected_category=ex_data['corrected_category'],
contributor_type=ex_data.get('contributor_type', 'other'),
confidence_score=ex_data.get('confidence_score')
)
db.session.add(training_example)
imported_count += 1
db.session.commit()
return jsonify({
'success': True,
'imported_count': imported_count
})
except KeyError as e:
db.session.rollback()
return jsonify({'success': False, 'error': f'Missing required field: {str(e)}'}), 400
except Exception as e:
db.session.rollback()
return jsonify({'success': False, 'error': str(e)}), 500
# ============================================================================
# FINE-TUNING TRAINING ORCHESTRATION ENDPOINTS
# ============================================================================
@bp.route('/api/start-fine-tuning', methods=['POST'])
@admin_required
def start_fine_tuning():
"""Start a fine-tuning training run"""
try:
config = request.json
# Validate minimum training examples
min_examples = int(Settings.get_setting('min_training_examples', '20'))
total_examples = TrainingExample.query.count()
if total_examples < min_examples:
return jsonify({
'success': False,
'error': f'Need at least {min_examples} training examples (have {total_examples})'
}), 400
# Create new training run record
training_run = FineTuningRun(
status='preparing'
)
training_run.set_config(config)
db.session.add(training_run)
db.session.commit()
run_id = training_run.id
# Start training in background thread
import threading
thread = threading.Thread(
target=_run_training_job,
args=(run_id, config)
)
thread.daemon = True
thread.start()
return jsonify({
'success': True,
'run_id': run_id,
'message': 'Training started'
})
except Exception as e:
db.session.rollback()
return jsonify({'success': False, 'error': str(e)}), 500
def _run_training_job(run_id: int, config: Dict):
"""Background job for training (runs in separate thread)"""
from app import create_app
from app.fine_tuning import BARTFineTuner
# Create new app context for this thread
app = create_app()
with app.app_context():
try:
# Get training run
run = FineTuningRun.query.get(run_id)
if not run:
print(f"Training run {run_id} not found")
return
# Update status
run.status = 'preparing'
db.session.commit()
# Get training examples (prefer sentence-level if available)
use_sentence_level = config.get('use_sentence_level_training', True)
if use_sentence_level:
# Use only sentence-level training examples
examples = TrainingExample.query.filter(TrainingExample.sentence_id != None).all()
# Fallback to submission-level if not enough sentence-level examples
if len(examples) < int(Settings.get_setting('min_training_examples', '20')):
logger.warning(f"Only {len(examples)} sentence-level examples found, including submission-level examples")
examples = TrainingExample.query.all()
else:
# Use all training examples (old behavior)
examples = TrainingExample.query.all()
training_data = [ex.to_dict() for ex in examples]
logger.info(f"Using {len(training_data)} training examples ({len([e for e in examples if e.sentence_id])} sentence-level)")
# Calculate split sizes
total = len(training_data)
run.num_training_examples = int(total * config.get('train_split', 0.7))
run.num_validation_examples = int(total * config.get('val_split', 0.15))
run.num_test_examples = total - run.num_training_examples - run.num_validation_examples
db.session.commit()
# Initialize trainer
trainer = BARTFineTuner()
# Prepare datasets
train_dataset, val_dataset, test_dataset = trainer.prepare_dataset(
training_data,
train_split=config.get('train_split', 0.7),
val_split=config.get('val_split', 0.15),
test_split=config.get('test_split', 0.15)
)
# Setup model based on training mode
training_mode = config.get('training_mode', 'head_only')
if training_mode == 'head_only':
# Head-only training (recommended for small datasets)
trainer.setup_head_only_model()
else:
# LoRA training
lora_config = {
'r': config.get('lora_rank', 16),
'lora_alpha': config.get('lora_alpha', 32),
'lora_dropout': config.get('lora_dropout', 0.1)
}
trainer.setup_lora_model(lora_config)
# Update status to training
run.status = 'training'
db.session.commit()
# Train
models_dir = os.getenv('MODELS_DIR', '/data/models/finetuned')
output_dir = os.path.join(models_dir, f'run_{run_id}')
training_config = {
'learning_rate': config.get('learning_rate', 3e-4),
'num_epochs': config.get('num_epochs', 3),
'batch_size': config.get('batch_size', 8)
}
train_metrics = trainer.train(
train_dataset,
val_dataset,
output_dir,
training_config,
run_id=run_id
)
# Update status to evaluating
run.status = 'evaluating'
run.model_path = output_dir
db.session.commit()
# Evaluate on test set
test_metrics = trainer.evaluate(test_dataset, output_dir)
# Combine metrics
results = {
**train_metrics,
**test_metrics
}
run.set_results(results)
# Calculate improvement over baseline (simplified - just use test accuracy)
baseline_accuracy = 0.60 # Placeholder - could run actual baseline comparison
run.improvement_over_baseline = results['test_accuracy'] - baseline_accuracy
# Mark training examples as used
for example in examples:
example.used_in_training = True
example.training_run_id = run_id
# Complete
run.status = 'completed'
run.completed_at = datetime.utcnow()
db.session.commit()
print(f"Training run {run_id} completed successfully")
except Exception as e:
print(f"Training run {run_id} failed: {str(e)}")
run = FineTuningRun.query.get(run_id)
if run:
run.status = 'failed'
run.error_message = str(e)
db.session.commit()
@bp.route('/api/training-status/<int:run_id>', methods=['GET'])
@admin_required
def get_training_status(run_id):
"""Get status of a training run"""
run = FineTuningRun.query.get_or_404(run_id)
# Calculate progress percentage
progress = 0
if run.status == 'preparing':
progress = 10
elif run.status == 'training':
# Calculate precise progress based on steps
if run.total_steps and run.total_steps > 0 and run.current_step:
step_progress = (run.current_step / run.total_steps) * 80 # 10-90% range for training
progress = 10 + step_progress
else:
progress = 50 # Default fallback
elif run.status == 'evaluating':
progress = 90
elif run.status == 'completed':
progress = 100
elif run.status == 'failed':
progress = 0
# Get training mode from config
config = run.get_config() if hasattr(run, 'get_config') else {}
training_mode = config.get('training_mode', 'lora')
mode_label = 'classification head only' if training_mode == 'head_only' else 'LoRA adapters'
use_sentence_level = config.get('use_sentence_level_training', True)
status_messages = {
'preparing': 'Preparing training data...',
'training': f'Training model ({mode_label})...',
'evaluating': 'Evaluating model performance...',
'completed': 'Training completed successfully!',
'failed': 'Training failed'
}
response = {
'run_id': run_id,
'status': run.status,
'status_message': status_messages.get(run.status, run.status),
'progress': progress,
'details': '',
'current_epoch': run.current_epoch if hasattr(run, 'current_epoch') else None,
'total_epochs': run.total_epochs if hasattr(run, 'total_epochs') else None,
'current_step': run.current_step if hasattr(run, 'current_step') else None,
'total_steps': run.total_steps if hasattr(run, 'total_steps') else None,
'current_loss': run.current_loss if hasattr(run, 'current_loss') else None,
'progress_message': run.progress_message if hasattr(run, 'progress_message') else None
}
if run.status == 'training':
if hasattr(run, 'progress_message') and run.progress_message:
response['details'] = run.progress_message
else:
data_type = 'sentence-level' if use_sentence_level else 'submission-level'
response['details'] = f'Training on {run.num_training_examples} {data_type} examples...'
elif run.status == 'completed':
results = run.get_results()
if results:
response['results'] = results
response['details'] = f"Test accuracy: {results.get('test_accuracy', 0)*100:.1f}%"
elif run.status == 'failed':
response['error_message'] = run.error_message
return jsonify(response)
@bp.route('/api/deploy-model/<int:run_id>', methods=['POST'])
@admin_required
def deploy_model(run_id):
"""Deploy a fine-tuned model"""
try:
from app.fine_tuning import ModelManager
from app.analyzer import reload_analyzer
manager = ModelManager()
result = manager.deploy_model(run_id, db.session)
# Reload analyzer to use new model
reload_analyzer()
return jsonify({
'success': True,
**result
})
except Exception as e:
return jsonify({'success': False, 'error': str(e)}), 500
@bp.route('/api/rollback-model', methods=['POST'])
@admin_required
def rollback_model():
"""Rollback to base model"""
try:
from app.fine_tuning import ModelManager
from app.analyzer import reload_analyzer
manager = ModelManager()
result = manager.rollback_to_baseline(db.session)
# Reload analyzer to use base model
reload_analyzer()
return jsonify({
'success': True,
**result
})
except Exception as e:
return jsonify({'success': False, 'error': str(e)}), 500
@bp.route('/api/run-details/<int:run_id>', methods=['GET'])
@admin_required
def get_run_details(run_id):
"""Get detailed information about a training run"""
run = FineTuningRun.query.get_or_404(run_id)
return jsonify(run.to_dict())
@bp.route('/api/set-zero-shot-model', methods=['POST'])
@admin_required
def set_zero_shot_model():
"""Set the zero-shot model for classification"""
try:
from app.fine_tuning.model_presets import get_model_preset
from app.analyzer import reload_analyzer
data = request.get_json()
model_key = data.get('model_key')
if not model_key:
return jsonify({'success': False, 'error': 'No model key provided'}), 400
# Validate model exists and supports zero-shot
model_preset = get_model_preset(model_key)
if not model_preset.get('supports_zero_shot', False):
return jsonify({
'success': False,
'error': 'Selected model does not support zero-shot classification'
}), 400
# Save setting
Settings.set_setting('zero_shot_model', model_key)
# Reload analyzer with new model
reload_analyzer()
logger.info(f"Zero-shot model changed to: {model_preset['name']}")
return jsonify({
'success': True,
'message': f"Zero-shot model changed to {model_preset['name']}",
'model_key': model_key,
'model_name': model_preset['name']
})
except Exception as e:
logger.error(f"Error changing zero-shot model: {str(e)}")
return jsonify({'success': False, 'error': str(e)}), 500
@bp.route('/api/get-zero-shot-model', methods=['GET'])
@admin_required
def get_zero_shot_model():
"""Get the current zero-shot model"""
try:
from app.fine_tuning.model_presets import get_model_preset
model_key = Settings.get_setting('zero_shot_model', 'bart-large-mnli')
model_preset = get_model_preset(model_key)
return jsonify({
'success': True,
'model_key': model_key,
'model_name': model_preset['name'],
'model_info': {
'size': model_preset['size'],
'speed': model_preset['speed'],
'description': model_preset['description']
}
})
except Exception as e:
logger.error(f"Error getting zero-shot model: {str(e)}")
return jsonify({'success': False, 'error': str(e)}), 500
@bp.route('/api/delete-training-run/<int:run_id>', methods=['DELETE'])
@admin_required
def delete_training_run(run_id):
"""Delete a training run and its associated files"""
try:
run = FineTuningRun.query.get_or_404(run_id)
# Prevent deletion of active model
if run.is_active_model:
return jsonify({
'success': False,
'error': 'Cannot delete the active model. Please rollback or deploy another model first.'
}), 400
# Prevent deletion of currently training runs
if run.status == 'training':
return jsonify({
'success': False,
'error': 'Cannot delete a training run that is currently in progress.'
}), 400
# Delete model files if they exist
import shutil
if run.model_path and os.path.exists(run.model_path):
try:
shutil.rmtree(run.model_path)
logger.info(f"Deleted model files at {run.model_path}")
except Exception as e:
logger.error(f"Error deleting model files: {str(e)}")
# Continue with database deletion even if file deletion fails
# Unlink training examples from this run (don't delete the examples themselves)
for example in run.training_examples:
example.training_run_id = None
example.used_in_training = False
# Delete the training run from database
db.session.delete(run)
db.session.commit()
return jsonify({
'success': True,
'message': f'Training run #{run_id} deleted successfully'
})
except Exception as e:
db.session.rollback()
logger.error(f"Error deleting training run: {str(e)}")
return jsonify({'success': False, 'error': str(e)}), 500
@bp.route('/api/force-delete-training-run/<int:run_id>', methods=['DELETE'])
@admin_required
def force_delete_training_run(run_id):
"""Force delete a training run, bypassing all safety checks"""
try:
run = FineTuningRun.query.get_or_404(run_id)
# If this is the active model, deactivate it first
if run.is_active_model:
run.is_active_model = False
logger.warning(f"Force deleting active model run #{run_id}")
# Delete model files if they exist
import shutil
if run.model_path and os.path.exists(run.model_path):
try:
shutil.rmtree(run.model_path)
logger.info(f"Deleted model files at {run.model_path}")
except Exception as e:
logger.error(f"Error deleting model files: {str(e)}")
# Continue with database deletion even if file deletion fails
# Unlink training examples from this run (don't delete the examples themselves)
for example in run.training_examples:
example.training_run_id = None
example.used_in_training = False
# Delete the training run from database
db.session.delete(run)
db.session.commit()
return jsonify({
'success': True,
'message': f'Training run #{run_id} force deleted successfully'
})
except Exception as e:
db.session.rollback()
logger.error(f"Error force deleting training run: {str(e)}")
return jsonify({'success': False, 'error': str(e)}), 500
@bp.route('/api/export-model/<int:run_id>', methods=['GET'])
@admin_required
def export_model(run_id):
"""Export a trained model as a downloadable ZIP file"""
try:
import tempfile
import shutil
from datetime import datetime
run = FineTuningRun.query.get_or_404(run_id)
if run.status != 'completed':
return jsonify({
'success': False,
'error': 'Can only export completed training runs'
}), 400
if not run.model_path or not os.path.exists(run.model_path):
return jsonify({
'success': False,
'error': 'Model files not found'
}), 404
# Create temporary directory for export
temp_dir = tempfile.mkdtemp()
try:
export_name = f"model_run_{run_id}"
export_path = os.path.join(temp_dir, export_name)
# Copy model files
shutil.copytree(run.model_path, export_path)
# Create model card with metadata
config = run.get_config()
results = run.get_results()
model_card = {
'run_id': run_id,
'export_date': datetime.utcnow().isoformat(),
'created_at': run.created_at.isoformat() if run.created_at else None,
'training_mode': config.get('training_mode', 'lora'),
'base_model': 'facebook/bart-large-mnli',
'model_type': 'BART fine-tuned for text classification',
'task': 'Multi-class text classification',
'categories': ['Vision', 'Problem', 'Objectives', 'Directives', 'Values', 'Actions'],
'training_config': config,
'results': results,
'improvement_over_baseline': run.improvement_over_baseline,
'num_training_examples': run.num_training_examples,
'num_validation_examples': run.num_validation_examples,
'num_test_examples': run.num_test_examples
}
with open(os.path.join(export_path, 'model_card.json'), 'w') as f:
json.dump(model_card, f, indent=2)
# Create README
readme_content = f"""# Participatory Planning Model - Run {run_id}
## Model Information
- **Export Date**: {datetime.utcnow().strftime('%Y-%m-%d %H:%M UTC')}
- **Training Mode**: {config.get('training_mode', 'lora').upper()}
- **Base Model**: facebook/bart-large-mnli
- **Task**: Multi-class text classification
## Categories
1. Vision
2. Problem
3. Objectives
4. Directives
5. Values
6. Actions
## Training Configuration
- **Learning Rate**: {config.get('learning_rate', 'N/A')}
- **Epochs**: {config.get('num_epochs', 'N/A')}
- **Batch Size**: {config.get('batch_size', 'N/A')}
- **Training Examples**: {run.num_training_examples}
- **Validation Examples**: {run.num_validation_examples}
- **Test Examples**: {run.num_test_examples}
## Performance
- **Test Accuracy**: {results.get('test_accuracy', 0)*100:.1f}%
- **Improvement over Baseline**: {run.improvement_over_baseline*100:.1f}%
## Usage
To load this model:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("./model_run_{run_id}")
model = AutoModelForSequenceClassification.from_pretrained("./model_run_{run_id}")
```
See model_card.json for detailed metrics.
"""
with open(os.path.join(export_path, 'README.md'), 'w') as f:
f.write(readme_content)
# Create ZIP file
zip_path = os.path.join(temp_dir, f"model_run_{run_id}")
shutil.make_archive(zip_path, 'zip', temp_dir, export_name)
zip_file = f"{zip_path}.zip"
# Read ZIP file into memory before cleaning up temp dir
with open(zip_file, 'rb') as f:
zip_data = io.BytesIO(f.read())
# Clean up temp directory
shutil.rmtree(temp_dir)
# Send file from memory
zip_data.seek(0)
return send_file(
zip_data,
mimetype='application/zip',
as_attachment=True,
download_name=f'participatory_planner_model_run_{run_id}_{datetime.now().strftime("%Y%m%d")}.zip'
)
except Exception as e:
# Clean up temp dir if error occurs
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
raise e
except Exception as e:
logger.error(f"Error exporting model: {str(e)}")
return jsonify({'success': False, 'error': str(e)}), 500
@bp.route('/api/import-model', methods=['POST'])
@admin_required
def import_model():
"""Import a previously exported model from ZIP file"""
try:
import tempfile
import zipfile
import shutil
if 'file' not in request.files:
return jsonify({'success': False, 'error': 'No file uploaded'}), 400
file = request.files['file']
if file.filename == '':
return jsonify({'success': False, 'error': 'No file selected'}), 400
if not file.filename.endswith('.zip'):
return jsonify({'success': False, 'error': 'File must be a ZIP archive'}), 400
# Create temporary directory for extraction
with tempfile.TemporaryDirectory() as temp_dir:
# Save uploaded ZIP
zip_path = os.path.join(temp_dir, 'upload.zip')
file.save(zip_path)
# Extract ZIP
extract_dir = os.path.join(temp_dir, 'extracted')
os.makedirs(extract_dir, exist_ok=True)
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_dir)
# Find the model directory (should be model_run_X)
contents = os.listdir(extract_dir)
if len(contents) != 1:
return jsonify({'success': False, 'error': 'Invalid model archive structure'}), 400
model_dir = os.path.join(extract_dir, contents[0])
# Validate it's a valid model
required_files = ['config.json']
model_files = ['pytorch_model.bin', 'model.safetensors'] # Either format
has_config = os.path.exists(os.path.join(model_dir, 'config.json'))
has_model = any(os.path.exists(os.path.join(model_dir, f)) for f in model_files)
if not has_config or not has_model:
return jsonify({
'success': False,
'error': 'Invalid model archive - missing required files (config.json and model weights)'
}), 400
# Read model card if available
model_info = {}
model_card_path = os.path.join(model_dir, 'model_card.json')
if os.path.exists(model_card_path):
with open(model_card_path, 'r') as f:
model_info = json.load(f)
# Create new training run record
training_run = FineTuningRun(
status='completed',
created_at=datetime.utcnow()
)
# Set config from model card if available
if 'training_config' in model_info:
training_run.set_config(model_info['training_config'])
else:
# Default config for imported models
training_run.set_config({
'training_mode': 'imported',
'imported': True,
'original_filename': file.filename
})
# Set metadata from model card
if 'num_training_examples' in model_info:
training_run.num_training_examples = model_info['num_training_examples']
if 'num_validation_examples' in model_info:
training_run.num_validation_examples = model_info['num_validation_examples']
if 'num_test_examples' in model_info:
training_run.num_test_examples = model_info['num_test_examples']
if 'results' in model_info:
training_run.set_results(model_info['results'])
if 'improvement_over_baseline' in model_info:
training_run.improvement_over_baseline = model_info['improvement_over_baseline']
training_run.completed_at = datetime.utcnow()
db.session.add(training_run)
db.session.commit()
# Copy model to models directory
models_dir = os.getenv('MODELS_DIR', '/data/models/finetuned')
destination_path = os.path.join(models_dir, f'run_{training_run.id}')
shutil.copytree(model_dir, destination_path)
training_run.model_path = destination_path
db.session.commit()
logger.info(f"Model imported successfully as run {training_run.id}")
return jsonify({
'success': True,
'run_id': training_run.id,
'message': f'Model imported successfully as run #{training_run.id}',
'model_info': model_info
})
except zipfile.BadZipFile:
return jsonify({'success': False, 'error': 'Invalid ZIP file'}), 400
except Exception as e:
db.session.rollback()
logger.error(f"Error importing model: {str(e)}")
return jsonify({'success': False, 'error': str(e)}), 500
|