File size: 8,693 Bytes
30b060a
9d3a830
 
bbd8ccb
 
6a748ed
efbfdc1
aaf8367
 
efbfdc1
85ea4ec
52adc97
aaf8367
 
 
 
85ea4ec
bbd8ccb
52adc97
85ea4ec
bbd8ccb
52adc97
bbd8ccb
 
52adc97
 
bbd8ccb
85ea4ec
52adc97
85ea4ec
 
 
 
52adc97
 
 
 
 
 
 
 
 
 
85ea4ec
52adc97
85ea4ec
 
 
 
52adc97
 
 
 
 
 
 
 
 
85ea4ec
52adc97
aaf8367
bbd8ccb
85ea4ec
415b778
 
aaf8367
bbd8ccb
 
 
415b778
85ea4ec
 
 
bbd8ccb
aaf8367
2565f04
bbd8ccb
aaf8367
2565f04
bbd8ccb
 
 
 
415b778
bbd8ccb
 
 
 
 
 
 
 
 
 
 
 
415b778
bbd8ccb
 
 
415b778
 
819a580
415b778
 
 
 
 
bbd8ccb
efbfdc1
 
8c6ac41
 
efbfdc1
415b778
 
8c6ac41
 
 
415b778
8c6ac41
 
 
415b778
 
8c6ac41
415b778
6a748ed
 
efbfdc1
2c808b2
efbfdc1
 
2565f04
 
 
 
 
 
9d3a830
efbfdc1
2c808b2
bbd8ccb
2c808b2
bbd8ccb
 
 
 
2c808b2
 
 
 
 
 
bbd8ccb
2c808b2
bbd8ccb
 
aaf8367
 
 
2565f04
 
 
efbfdc1
 
2565f04
bbd8ccb
efbfdc1
415b778
 
2565f04
 
 
 
 
efbfdc1
2565f04
9d3a830
2565f04
 
 
415b778
2565f04
 
bbd8ccb
2565f04
415b778
bbd8ccb
2565f04
 
 
 
bbd8ccb
819a580
 
2565f04
 
 
819a580
2565f04
819a580
bbd8ccb
2565f04
2c808b2
 
 
 
 
 
819a580
 
2565f04
819a580
 
2565f04
 
 
 
 
 
bbd8ccb
9d3a830
fa6b782
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import gradio as gr
from huggingface_hub import InferenceClient
from datasets import load_dataset
import random
import re

# Global datasets - load lazily
math_samples = None

def load_sample_problems():
    """Load sample problems from ALL datasets - FIXED VERSION"""
    global math_samples
    if math_samples is not None:
        return math_samples
    
    samples = []
    try:
        print("🔄 Loading GSM8K...")
        # GSM8K (math problems)
        gsm8k = load_dataset("openai/gsm8k", "main", streaming=True)
        gsm_count = 0
        for i, item in enumerate(gsm8k["train"]):
            samples.append(item["question"])
            gsm_count += 1
            if gsm_count >= 50:
                break
        
        print("🔄 Loading Fineweb-edu...")
        # Fineweb-edu (educational text - extract math-like questions)
        fw = load_dataset("HuggingFaceFW/fineweb-edu", name="sample-10BT", split="train", streaming=True)
        fw_count = 0
        for item in fw:
            # Filter for math-related content
            text_lower = item['text'].lower()
            if any(word in text_lower for word in ['math', 'calculate', 'solve', 'derivative', 'integral', 'triangle', 'equation', 'area', 'volume', 'probability']):
                # Truncate and format as question
                question = item['text'][:150].strip()
                if len(question) > 20:  # Ensure it's substantial
                    samples.append(question + " (Solve this math problem.)")
                    fw_count += 1
                    if fw_count >= 20:
                        break
        
        print("🔄 Loading Ultrachat...")
        # Ultrachat_200k (chat-like math queries)
        ds = load_dataset("HuggingFaceH4/ultrachat_200k", streaming=True)
        ds_count = 0
        for item in ds:
            if len(item['messages']) > 0:
                content = item['messages'][0]['content'].lower()
                if any(word in content for word in ['math', 'calculate', 'solve', 'problem', 'equation', 'derivative', 'integral']):
                    user_msg = item['messages'][0]['content']
                    if len(user_msg) > 10:  # Valid length
                        samples.append(user_msg)
                        ds_count += 1
                        if ds_count >= 20:
                            break
        
        print(f"✅ Loaded {len(samples)} samples: GSM8K ({gsm_count}), Fineweb-edu ({fw_count}), Ultrachat ({ds_count})")
        math_samples = samples
        return samples
        
    except Exception as e:
        print(f"⚠️ Dataset error: {e}, using fallback")
        math_samples = [
            "What is the derivative of f(x) = 3x² + 2x - 1?",
            "A triangle has sides of length 5, 12, and 13. What is its area?",
            "If log₂(x) + log₂(x+6) = 4, find the value of x.",
            "Find the limit: lim(x->0) (sin(x)/x)",
            "Solve the system: x + 2y = 7, 3x - y = 4",
            "Calculate the integral of sin(x) from 0 to pi.",
            "What is the probability of rolling a 6 on a die 3 times in a row?"
        ]
        return math_samples

def create_math_system_message():
    """Specialized system prompt for mathematics with LaTeX"""
    return r"""You are Mathetics AI, an advanced mathematics tutor and problem solver.

🧮 **Your Expertise:**
- Step-by-step problem solving with clear explanations
- Multiple solution approaches when applicable
- Proper mathematical notation and terminology using LaTeX
- Verification of answers through different methods

📐 **Problem Domains:**
- Arithmetic, Algebra, and Number Theory
- Geometry, Trigonometry, and Coordinate Geometry
- Calculus (Limits, Derivatives, Integrals)
- Statistics, Probability, and Data Analysis
- Competition Mathematics (AMC, AIME level)

💡 **Teaching Style:**
1. **Understand the Problem** - Identify what's being asked
2. **Plan the Solution** - Choose the appropriate method
3. **Execute Step-by-Step** - Show all work clearly with LaTeX formatting
4. **Verify the Answer** - Check if the result makes sense
5. **Alternative Methods** - Mention other possible approaches

**LaTeX Guidelines:**
- Use $...$ for inline math: $x^2 + y^2 = z^2$
- Use $$...$$ for display math
- Box final answers: \boxed{answer}
- Fractions: \frac{numerator}{denominator}
- Limits: \lim_{x \to 0}
- Derivatives: \frac{d}{dx} or f'(x)

Always be precise, educational, and encourage mathematical thinking."""

def render_latex(text):
    """Minimal LaTeX cleanup - let the model do the work"""
    if not text:
        return text
    
    try:
        # Convert LaTeX bracket notation to dollar signs
        text = re.sub(r'\\\[(.*?)\\\]', r'$$\1$$', text, flags=re.DOTALL)
        text = re.sub(r'\\\((.*?)\\\)', r'$\1$', text, flags=re.DOTALL)
        
        # Fix boxed answers ONLY if not already in math mode
        if '\\boxed' in text and not re.search(r'\$.*\\boxed.*\$', text):
            text = re.sub(r'\\boxed\{([^}]+)\}', r'$\\boxed{\1}$', text)
        
    except Exception as e:
        print(f"⚠️ LaTeX error: {e}")
    
    return text

def respond(message, history, system_message, max_tokens, temperature, top_p):
    """Streaming response with yield"""
    client = InferenceClient(model="Qwen/Qwen2.5-Math-7B-Instruct")
    
    messages = [{"role": "system", "content": system_message}]
    for msg in history:
        if msg["role"] == "user":
            messages.append({"role": "user", "content": msg["content"]})
        elif msg["role"] == "assistant":
            messages.append({"role": "assistant", "content": msg["content"]})
    messages.append({"role": "user", "content": message})
    
    response = ""
    try:
        for chunk in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            stream=True  # Enable streaming
        ):
            if chunk.choices[0].delta.content:
                response += chunk.choices[0].delta.content
                yield render_latex(response)  # Yield progressively
                
    except Exception as e:
        yield f"❌ Error: {str(e)[:100]}..."

def get_random_sample():
    """Get a random sample problem - loads datasets if needed"""
    global math_samples
    if math_samples is None:
        math_samples = load_sample_problems()
    return random.choice(math_samples)

def insert_sample_to_chat(difficulty):
    """Insert random sample into chat input"""
    return get_random_sample()

def show_help():
    return """**🧮 Math Help Tips:**

1. Be Specific: "Find the derivative of x² + 3x" instead of "help with calculus"
2. Request Steps: "Show me step-by-step how to solve..."
3. Ask for Verification: "Check if my answer x=5 is correct"
4. Alternative Methods: "What's another way to solve this integral?"
5. Use Clear Notation: "lim(x->0)" for limits

Pro Tip: Crank tokens to 1500+ for competition problems!"""

# Simple Chatbot interface
with gr.Blocks(title="🧮 Mathetics AI") as demo:
    gr.Markdown("# 🧮 **Mathetics AI** - Math Tutor\nPowered by Qwen 2.5-Math")
    
    chatbot = gr.Chatbot(height=500, label="Conversation", type='messages')
    help_text = gr.Markdown(visible=False)
    
    msg = gr.Textbox(placeholder="Ask a math problem...", show_label=False)
    
    with gr.Row():
        submit = gr.Button("Solve", variant="primary")
        clear = gr.Button("Clear", variant="secondary")
        sample = gr.Button("Random Problem", variant="secondary")
        help_btn = gr.Button("Help", variant="secondary")
    
    gr.Examples(
        examples=[
            ["derivative of x^2 sin(x)"],
            ["area of triangle 5-12-13"],
            ["∫x^2 dx"]
        ],
        inputs=msg
    )
    
    def chat_response(message, history):
    history.append({"role": "user", "content": message})
    history.append({"role": "assistant", "content": ""})
    
    for partial_response in respond(message, history[:-1], create_math_system_message(), 1024, 0.3, 0.85):
        history[-1]["content"] = partial_response
        yield history, ""
    
    def clear_chat():
        """Clear the chat history and textbox."""
        return [], ""
    
    msg.submit(chat_response, [msg, chatbot], [chatbot, msg])
    submit.click(chat_response, [msg, chatbot], [chatbot, msg])
    clear.click(clear_chat, outputs=[chatbot, msg])
    sample.click(insert_sample_to_chat, outputs=msg)
    help_btn.click(lambda: (show_help(), gr.update(visible=True)), outputs=[help_text, help_text]).then(
        lambda: gr.update(visible=False), outputs=help_text
    )

demo.launch()