Spaces:
Running
on
L40S
Running
on
L40S
updated
Browse files
app.py
CHANGED
|
@@ -4,10 +4,14 @@ import gc
|
|
| 4 |
import numpy as np
|
| 5 |
import random
|
| 6 |
import os
|
|
|
|
|
|
|
|
|
|
| 7 |
os.environ['ELASTIC_LOG_LEVEL'] = 'DEBUG'
|
| 8 |
from transformers import AutoProcessor, pipeline
|
| 9 |
from elastic_models.transformers import MusicgenForConditionalGeneration
|
| 10 |
|
|
|
|
| 11 |
def set_seed(seed: int = 42):
|
| 12 |
random.seed(seed)
|
| 13 |
np.random.seed(seed)
|
|
@@ -17,6 +21,7 @@ def set_seed(seed: int = 42):
|
|
| 17 |
torch.backends.cudnn.deterministic = True
|
| 18 |
torch.backends.cudnn.benchmark = False
|
| 19 |
|
|
|
|
| 20 |
def cleanup_gpu():
|
| 21 |
"""Clean up GPU memory to avoid TensorRT conflicts."""
|
| 22 |
if torch.cuda.is_available():
|
|
@@ -24,17 +29,33 @@ def cleanup_gpu():
|
|
| 24 |
torch.cuda.synchronize()
|
| 25 |
gc.collect()
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
_generator = None
|
| 28 |
_processor = None
|
| 29 |
|
|
|
|
| 30 |
def load_model():
|
| 31 |
-
"""Load the musicgen model and processor using pipeline approach"""
|
| 32 |
global _generator, _processor
|
| 33 |
-
|
| 34 |
if _generator is None:
|
| 35 |
print("[MODEL] Starting model initialization...")
|
| 36 |
cleanup_gpu()
|
| 37 |
-
|
| 38 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 39 |
print(f"[MODEL] Using device: {device}")
|
| 40 |
|
|
@@ -42,7 +63,7 @@ def load_model():
|
|
| 42 |
_processor = AutoProcessor.from_pretrained(
|
| 43 |
"facebook/musicgen-large"
|
| 44 |
)
|
| 45 |
-
|
| 46 |
print("[MODEL] Loading model...")
|
| 47 |
model = MusicgenForConditionalGeneration.from_pretrained(
|
| 48 |
"facebook/musicgen-large",
|
|
@@ -51,9 +72,9 @@ def load_model():
|
|
| 51 |
mode="S",
|
| 52 |
__paged=True,
|
| 53 |
)
|
| 54 |
-
|
| 55 |
model.eval()
|
| 56 |
-
|
| 57 |
print("[MODEL] Creating pipeline...")
|
| 58 |
_generator = pipeline(
|
| 59 |
task="text-to-audio",
|
|
@@ -61,34 +82,36 @@ def load_model():
|
|
| 61 |
tokenizer=_processor.tokenizer,
|
| 62 |
device=device,
|
| 63 |
)
|
| 64 |
-
|
| 65 |
print("[MODEL] Model initialization completed successfully")
|
| 66 |
|
| 67 |
return _generator, _processor
|
| 68 |
|
|
|
|
| 69 |
def calculate_max_tokens(duration_seconds):
|
| 70 |
token_rate = 50
|
| 71 |
max_new_tokens = int(duration_seconds * token_rate)
|
| 72 |
print(f"[MODEL] Duration: {duration_seconds}s -> Tokens: {max_new_tokens} (rate: {token_rate})")
|
| 73 |
return max_new_tokens
|
| 74 |
|
|
|
|
| 75 |
def generate_music(text_prompt, duration=10, guidance_scale=3.0):
|
| 76 |
try:
|
| 77 |
generator, processor = load_model()
|
| 78 |
-
|
| 79 |
print(f"[GENERATION] Starting generation...")
|
| 80 |
print(f"[GENERATION] Prompt: '{text_prompt}'")
|
| 81 |
print(f"[GENERATION] Duration: {duration}s")
|
| 82 |
print(f"[GENERATION] Guidance scale: {guidance_scale}")
|
| 83 |
-
|
| 84 |
cleanup_gpu()
|
| 85 |
-
|
| 86 |
import time
|
| 87 |
set_seed(42)
|
| 88 |
print(f"[GENERATION] Using seed: {42}")
|
| 89 |
-
|
| 90 |
max_new_tokens = calculate_max_tokens(duration)
|
| 91 |
-
|
| 92 |
generation_params = {
|
| 93 |
'do_sample': True,
|
| 94 |
'guidance_scale': guidance_scale,
|
|
@@ -96,39 +119,43 @@ def generate_music(text_prompt, duration=10, guidance_scale=3.0):
|
|
| 96 |
'min_new_tokens': max_new_tokens,
|
| 97 |
'cache_implementation': 'paged',
|
| 98 |
}
|
| 99 |
-
|
| 100 |
prompts = [text_prompt]
|
| 101 |
outputs = generator(
|
| 102 |
prompts,
|
| 103 |
batch_size=1,
|
| 104 |
generate_kwargs=generation_params
|
| 105 |
)
|
| 106 |
-
|
| 107 |
print(f"[GENERATION] Generation completed successfully")
|
| 108 |
-
|
| 109 |
output = outputs[0]
|
| 110 |
audio_data = output['audio']
|
| 111 |
sample_rate = output['sampling_rate']
|
| 112 |
-
|
| 113 |
print(f"[GENERATION] Audio shape: {audio_data.shape}")
|
| 114 |
print(f"[GENERATION] Sample rate: {sample_rate}")
|
| 115 |
-
|
| 116 |
if len(audio_data.shape) > 1:
|
| 117 |
-
# If stereo or multi-channel, take first channel
|
| 118 |
audio_data = audio_data[0] if audio_data.shape[0] < audio_data.shape[1] else audio_data[:, 0]
|
| 119 |
-
|
| 120 |
audio_data = audio_data.flatten()
|
| 121 |
-
|
| 122 |
max_val = np.max(np.abs(audio_data))
|
| 123 |
if max_val > 0:
|
| 124 |
audio_data = audio_data / max_val * 0.95 # Scale to 95% to avoid clipping
|
| 125 |
-
|
| 126 |
audio_data = audio_data.astype(np.float32)
|
| 127 |
-
|
| 128 |
print(f"[GENERATION] Final audio shape: {audio_data.shape}")
|
| 129 |
print(f"[GENERATION] Audio range: [{np.min(audio_data):.3f}, {np.max(audio_data):.3f}]")
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
except Exception as e:
|
| 134 |
print(f"[ERROR] Generation failed: {str(e)}")
|
|
@@ -139,7 +166,7 @@ def generate_music(text_prompt, duration=10, guidance_scale=3.0):
|
|
| 139 |
with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
|
| 140 |
gr.Markdown("# 🎵 MusicGen Large Music Generator")
|
| 141 |
gr.Markdown("Generate music from text descriptions using Facebook's MusicGen Large model with elastic compression.")
|
| 142 |
-
|
| 143 |
with gr.Row():
|
| 144 |
with gr.Column():
|
| 145 |
text_input = gr.Textbox(
|
|
@@ -175,7 +202,7 @@ with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
|
|
| 175 |
format="wav",
|
| 176 |
interactive=False
|
| 177 |
)
|
| 178 |
-
|
| 179 |
with gr.Accordion("Tips", open=False):
|
| 180 |
gr.Markdown("""
|
| 181 |
- Be specific in your descriptions (e.g., "slow blues guitar with harmonica")
|
|
@@ -219,4 +246,5 @@ with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
|
|
| 219 |
""")
|
| 220 |
|
| 221 |
if __name__ == "__main__":
|
|
|
|
| 222 |
demo.launch()
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import random
|
| 6 |
import os
|
| 7 |
+
import tempfile
|
| 8 |
+
import soundfile as sf
|
| 9 |
+
|
| 10 |
os.environ['ELASTIC_LOG_LEVEL'] = 'DEBUG'
|
| 11 |
from transformers import AutoProcessor, pipeline
|
| 12 |
from elastic_models.transformers import MusicgenForConditionalGeneration
|
| 13 |
|
| 14 |
+
|
| 15 |
def set_seed(seed: int = 42):
|
| 16 |
random.seed(seed)
|
| 17 |
np.random.seed(seed)
|
|
|
|
| 21 |
torch.backends.cudnn.deterministic = True
|
| 22 |
torch.backends.cudnn.benchmark = False
|
| 23 |
|
| 24 |
+
|
| 25 |
def cleanup_gpu():
|
| 26 |
"""Clean up GPU memory to avoid TensorRT conflicts."""
|
| 27 |
if torch.cuda.is_available():
|
|
|
|
| 29 |
torch.cuda.synchronize()
|
| 30 |
gc.collect()
|
| 31 |
|
| 32 |
+
|
| 33 |
+
def cleanup_temp_files():
|
| 34 |
+
"""Clean up old temporary audio files."""
|
| 35 |
+
import glob
|
| 36 |
+
import time
|
| 37 |
+
temp_dir = tempfile.gettempdir()
|
| 38 |
+
cutoff_time = time.time() - 3600
|
| 39 |
+
for temp_file in glob.glob(os.path.join(temp_dir, "tmp*.wav")):
|
| 40 |
+
try:
|
| 41 |
+
if os.path.getctime(temp_file) < cutoff_time:
|
| 42 |
+
os.remove(temp_file)
|
| 43 |
+
print(f"[CLEANUP] Removed old temp file: {temp_file}")
|
| 44 |
+
except OSError:
|
| 45 |
+
pass
|
| 46 |
+
|
| 47 |
+
|
| 48 |
_generator = None
|
| 49 |
_processor = None
|
| 50 |
|
| 51 |
+
|
| 52 |
def load_model():
|
|
|
|
| 53 |
global _generator, _processor
|
| 54 |
+
|
| 55 |
if _generator is None:
|
| 56 |
print("[MODEL] Starting model initialization...")
|
| 57 |
cleanup_gpu()
|
| 58 |
+
|
| 59 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 60 |
print(f"[MODEL] Using device: {device}")
|
| 61 |
|
|
|
|
| 63 |
_processor = AutoProcessor.from_pretrained(
|
| 64 |
"facebook/musicgen-large"
|
| 65 |
)
|
| 66 |
+
|
| 67 |
print("[MODEL] Loading model...")
|
| 68 |
model = MusicgenForConditionalGeneration.from_pretrained(
|
| 69 |
"facebook/musicgen-large",
|
|
|
|
| 72 |
mode="S",
|
| 73 |
__paged=True,
|
| 74 |
)
|
| 75 |
+
|
| 76 |
model.eval()
|
| 77 |
+
|
| 78 |
print("[MODEL] Creating pipeline...")
|
| 79 |
_generator = pipeline(
|
| 80 |
task="text-to-audio",
|
|
|
|
| 82 |
tokenizer=_processor.tokenizer,
|
| 83 |
device=device,
|
| 84 |
)
|
| 85 |
+
|
| 86 |
print("[MODEL] Model initialization completed successfully")
|
| 87 |
|
| 88 |
return _generator, _processor
|
| 89 |
|
| 90 |
+
|
| 91 |
def calculate_max_tokens(duration_seconds):
|
| 92 |
token_rate = 50
|
| 93 |
max_new_tokens = int(duration_seconds * token_rate)
|
| 94 |
print(f"[MODEL] Duration: {duration_seconds}s -> Tokens: {max_new_tokens} (rate: {token_rate})")
|
| 95 |
return max_new_tokens
|
| 96 |
|
| 97 |
+
|
| 98 |
def generate_music(text_prompt, duration=10, guidance_scale=3.0):
|
| 99 |
try:
|
| 100 |
generator, processor = load_model()
|
| 101 |
+
|
| 102 |
print(f"[GENERATION] Starting generation...")
|
| 103 |
print(f"[GENERATION] Prompt: '{text_prompt}'")
|
| 104 |
print(f"[GENERATION] Duration: {duration}s")
|
| 105 |
print(f"[GENERATION] Guidance scale: {guidance_scale}")
|
| 106 |
+
|
| 107 |
cleanup_gpu()
|
| 108 |
+
|
| 109 |
import time
|
| 110 |
set_seed(42)
|
| 111 |
print(f"[GENERATION] Using seed: {42}")
|
| 112 |
+
|
| 113 |
max_new_tokens = calculate_max_tokens(duration)
|
| 114 |
+
|
| 115 |
generation_params = {
|
| 116 |
'do_sample': True,
|
| 117 |
'guidance_scale': guidance_scale,
|
|
|
|
| 119 |
'min_new_tokens': max_new_tokens,
|
| 120 |
'cache_implementation': 'paged',
|
| 121 |
}
|
| 122 |
+
|
| 123 |
prompts = [text_prompt]
|
| 124 |
outputs = generator(
|
| 125 |
prompts,
|
| 126 |
batch_size=1,
|
| 127 |
generate_kwargs=generation_params
|
| 128 |
)
|
| 129 |
+
|
| 130 |
print(f"[GENERATION] Generation completed successfully")
|
| 131 |
+
|
| 132 |
output = outputs[0]
|
| 133 |
audio_data = output['audio']
|
| 134 |
sample_rate = output['sampling_rate']
|
| 135 |
+
|
| 136 |
print(f"[GENERATION] Audio shape: {audio_data.shape}")
|
| 137 |
print(f"[GENERATION] Sample rate: {sample_rate}")
|
| 138 |
+
|
| 139 |
if len(audio_data.shape) > 1:
|
|
|
|
| 140 |
audio_data = audio_data[0] if audio_data.shape[0] < audio_data.shape[1] else audio_data[:, 0]
|
| 141 |
+
|
| 142 |
audio_data = audio_data.flatten()
|
| 143 |
+
|
| 144 |
max_val = np.max(np.abs(audio_data))
|
| 145 |
if max_val > 0:
|
| 146 |
audio_data = audio_data / max_val * 0.95 # Scale to 95% to avoid clipping
|
| 147 |
+
|
| 148 |
audio_data = audio_data.astype(np.float32)
|
| 149 |
+
|
| 150 |
print(f"[GENERATION] Final audio shape: {audio_data.shape}")
|
| 151 |
print(f"[GENERATION] Audio range: [{np.min(audio_data):.3f}, {np.max(audio_data):.3f}]")
|
| 152 |
|
| 153 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
|
| 154 |
+
sf.write(tmp_file.name, audio_data, sample_rate)
|
| 155 |
+
temp_path = tmp_file.name
|
| 156 |
+
|
| 157 |
+
print(f"[GENERATION] Audio saved to: {temp_path}")
|
| 158 |
+
return temp_path
|
| 159 |
|
| 160 |
except Exception as e:
|
| 161 |
print(f"[ERROR] Generation failed: {str(e)}")
|
|
|
|
| 166 |
with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
|
| 167 |
gr.Markdown("# 🎵 MusicGen Large Music Generator")
|
| 168 |
gr.Markdown("Generate music from text descriptions using Facebook's MusicGen Large model with elastic compression.")
|
| 169 |
+
|
| 170 |
with gr.Row():
|
| 171 |
with gr.Column():
|
| 172 |
text_input = gr.Textbox(
|
|
|
|
| 202 |
format="wav",
|
| 203 |
interactive=False
|
| 204 |
)
|
| 205 |
+
|
| 206 |
with gr.Accordion("Tips", open=False):
|
| 207 |
gr.Markdown("""
|
| 208 |
- Be specific in your descriptions (e.g., "slow blues guitar with harmonica")
|
|
|
|
| 246 |
""")
|
| 247 |
|
| 248 |
if __name__ == "__main__":
|
| 249 |
+
cleanup_temp_files()
|
| 250 |
demo.launch()
|