Spaces:
Running
on
L40S
Running
on
L40S
updated
Browse files- app.py +209 -13
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -6,12 +6,20 @@ import random
|
|
| 6 |
import os
|
| 7 |
import tempfile
|
| 8 |
import soundfile as sf
|
|
|
|
| 9 |
|
| 10 |
os.environ['ELASTIC_LOG_LEVEL'] = 'DEBUG'
|
| 11 |
from transformers import AutoProcessor, pipeline
|
| 12 |
from elastic_models.transformers import MusicgenForConditionalGeneration
|
| 13 |
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def set_seed(seed: int = 42):
|
| 16 |
random.seed(seed)
|
| 17 |
np.random.seed(seed)
|
|
@@ -23,7 +31,6 @@ def set_seed(seed: int = 42):
|
|
| 23 |
|
| 24 |
|
| 25 |
def cleanup_gpu():
|
| 26 |
-
"""Clean up GPU memory to avoid TensorRT conflicts."""
|
| 27 |
if torch.cuda.is_available():
|
| 28 |
torch.cuda.empty_cache()
|
| 29 |
torch.cuda.synchronize()
|
|
@@ -31,7 +38,6 @@ def cleanup_gpu():
|
|
| 31 |
|
| 32 |
|
| 33 |
def cleanup_temp_files():
|
| 34 |
-
"""Clean up old temporary audio files."""
|
| 35 |
import glob
|
| 36 |
import time
|
| 37 |
temp_dir = tempfile.gettempdir()
|
|
@@ -47,6 +53,8 @@ def cleanup_temp_files():
|
|
| 47 |
|
| 48 |
_generator = None
|
| 49 |
_processor = None
|
|
|
|
|
|
|
| 50 |
|
| 51 |
|
| 52 |
def load_model():
|
|
@@ -88,6 +96,44 @@ def load_model():
|
|
| 88 |
return _generator, _processor
|
| 89 |
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
def calculate_max_tokens(duration_seconds):
|
| 92 |
token_rate = 50
|
| 93 |
max_new_tokens = int(duration_seconds * token_rate)
|
|
@@ -160,9 +206,9 @@ def generate_music(text_prompt, duration=10, guidance_scale=3.0):
|
|
| 160 |
|
| 161 |
max_val = np.max(np.abs(audio_data))
|
| 162 |
if max_val > 0:
|
| 163 |
-
audio_data = audio_data / max_val * 0.95
|
| 164 |
|
| 165 |
-
audio_data = (audio_data * 32767).astype(np.int16)
|
| 166 |
|
| 167 |
print(f"[GENERATION] Final audio shape: {audio_data.shape}")
|
| 168 |
print(f"[GENERATION] Audio range: [{np.min(audio_data)}, {np.max(audio_data)}]")
|
|
@@ -180,6 +226,7 @@ def generate_music(text_prompt, duration=10, guidance_scale=3.0):
|
|
| 180 |
print(f"[GENERATION] Audio saved to: {temp_path}")
|
| 181 |
print(f"[GENERATION] File size: {file_size} bytes")
|
| 182 |
|
|
|
|
| 183 |
print(f"[GENERATION] Returning numpy tuple: ({sample_rate}, audio_array)")
|
| 184 |
return (sample_rate, audio_data)
|
| 185 |
else:
|
|
@@ -192,9 +239,150 @@ def generate_music(text_prompt, duration=10, guidance_scale=3.0):
|
|
| 192 |
return None
|
| 193 |
|
| 194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
|
| 196 |
gr.Markdown("# π΅ MusicGen Large Music Generator")
|
| 197 |
-
gr.Markdown("Generate music from text descriptions using Facebook's MusicGen Large model
|
| 198 |
|
| 199 |
with gr.Row():
|
| 200 |
with gr.Column():
|
|
@@ -204,7 +392,7 @@ with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
|
|
| 204 |
lines=3,
|
| 205 |
value="A groovy funk bassline with a tight drum beat"
|
| 206 |
)
|
| 207 |
-
|
| 208 |
with gr.Row():
|
| 209 |
duration = gr.Slider(
|
| 210 |
minimum=5,
|
|
@@ -222,13 +410,18 @@ with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
|
|
| 222 |
info="Higher values follow prompt more closely"
|
| 223 |
)
|
| 224 |
|
| 225 |
-
generate_btn = gr.Button("π΅ Generate Music", variant="primary", size="lg")
|
| 226 |
|
| 227 |
with gr.Column():
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
with gr.Accordion("Tips", open=False):
|
| 234 |
gr.Markdown("""
|
|
@@ -238,10 +431,13 @@ with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
|
|
| 238 |
- Duration is limited to 30 seconds for faster generation
|
| 239 |
""")
|
| 240 |
|
|
|
|
|
|
|
|
|
|
| 241 |
generate_btn.click(
|
| 242 |
-
fn=
|
| 243 |
inputs=[text_input, duration, guidance_scale],
|
| 244 |
-
outputs=
|
| 245 |
show_progress=True
|
| 246 |
)
|
| 247 |
|
|
|
|
| 6 |
import os
|
| 7 |
import tempfile
|
| 8 |
import soundfile as sf
|
| 9 |
+
import time
|
| 10 |
|
| 11 |
os.environ['ELASTIC_LOG_LEVEL'] = 'DEBUG'
|
| 12 |
from transformers import AutoProcessor, pipeline
|
| 13 |
from elastic_models.transformers import MusicgenForConditionalGeneration
|
| 14 |
|
| 15 |
|
| 16 |
+
MODEL_CONFIG = {
|
| 17 |
+
'cost_per_hour': 1.8, # $1.8 per hour
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
original_time_cache = {}
|
| 21 |
+
|
| 22 |
+
|
| 23 |
def set_seed(seed: int = 42):
|
| 24 |
random.seed(seed)
|
| 25 |
np.random.seed(seed)
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
def cleanup_gpu():
|
|
|
|
| 34 |
if torch.cuda.is_available():
|
| 35 |
torch.cuda.empty_cache()
|
| 36 |
torch.cuda.synchronize()
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
def cleanup_temp_files():
|
|
|
|
| 41 |
import glob
|
| 42 |
import time
|
| 43 |
temp_dir = tempfile.gettempdir()
|
|
|
|
| 53 |
|
| 54 |
_generator = None
|
| 55 |
_processor = None
|
| 56 |
+
_original_generator = None
|
| 57 |
+
_original_processor = None
|
| 58 |
|
| 59 |
|
| 60 |
def load_model():
|
|
|
|
| 96 |
return _generator, _processor
|
| 97 |
|
| 98 |
|
| 99 |
+
def load_original_model():
|
| 100 |
+
global _original_generator, _original_processor
|
| 101 |
+
|
| 102 |
+
if _original_generator is None:
|
| 103 |
+
print("[ORIGINAL MODEL] Starting original model initialization...")
|
| 104 |
+
cleanup_gpu()
|
| 105 |
+
|
| 106 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 107 |
+
print(f"[ORIGINAL MODEL] Using device: {device}")
|
| 108 |
+
|
| 109 |
+
print("[ORIGINAL MODEL] Loading processor...")
|
| 110 |
+
_original_processor = AutoProcessor.from_pretrained(
|
| 111 |
+
"facebook/musicgen-large"
|
| 112 |
+
)
|
| 113 |
+
from transformers import MusicgenForConditionalGeneration as HFMusicgenForConditionalGeneration
|
| 114 |
+
|
| 115 |
+
print("[ORIGINAL MODEL] Loading original model...")
|
| 116 |
+
model = HFMusicgenForConditionalGeneration.from_pretrained(
|
| 117 |
+
"facebook/musicgen-large",
|
| 118 |
+
torch_dtype=torch.float16,
|
| 119 |
+
device=device,
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
model.eval()
|
| 123 |
+
|
| 124 |
+
print("[ORIGINAL MODEL] Creating pipeline...")
|
| 125 |
+
_original_generator = pipeline(
|
| 126 |
+
task="text-to-audio",
|
| 127 |
+
model=model,
|
| 128 |
+
tokenizer=_original_processor.tokenizer,
|
| 129 |
+
device=device,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
print("[ORIGINAL MODEL] Original model initialization completed successfully")
|
| 133 |
+
|
| 134 |
+
return _original_generator, _original_processor
|
| 135 |
+
|
| 136 |
+
|
| 137 |
def calculate_max_tokens(duration_seconds):
|
| 138 |
token_rate = 50
|
| 139 |
max_new_tokens = int(duration_seconds * token_rate)
|
|
|
|
| 206 |
|
| 207 |
max_val = np.max(np.abs(audio_data))
|
| 208 |
if max_val > 0:
|
| 209 |
+
audio_data = audio_data / max_val * 0.95
|
| 210 |
|
| 211 |
+
audio_data = (audio_data * 32767).astype(np.int16)
|
| 212 |
|
| 213 |
print(f"[GENERATION] Final audio shape: {audio_data.shape}")
|
| 214 |
print(f"[GENERATION] Audio range: [{np.min(audio_data)}, {np.max(audio_data)}]")
|
|
|
|
| 226 |
print(f"[GENERATION] Audio saved to: {temp_path}")
|
| 227 |
print(f"[GENERATION] File size: {file_size} bytes")
|
| 228 |
|
| 229 |
+
# Try returning numpy format instead
|
| 230 |
print(f"[GENERATION] Returning numpy tuple: ({sample_rate}, audio_array)")
|
| 231 |
return (sample_rate, audio_data)
|
| 232 |
else:
|
|
|
|
| 239 |
return None
|
| 240 |
|
| 241 |
|
| 242 |
+
def calculate_generation_cost(generation_time_seconds, mode='S'):
|
| 243 |
+
hours = generation_time_seconds / 3600
|
| 244 |
+
cost_per_hour = MODEL_CONFIG['cost_per_hour']
|
| 245 |
+
return hours * cost_per_hour
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def calculate_cost_savings(compressed_time, original_time):
|
| 249 |
+
compressed_cost = calculate_generation_cost(compressed_time, 'S')
|
| 250 |
+
original_cost = calculate_generation_cost(original_time, 'original')
|
| 251 |
+
savings = original_cost - compressed_cost
|
| 252 |
+
savings_percent = (savings / original_cost * 100) if original_cost > 0 else 0
|
| 253 |
+
return {
|
| 254 |
+
'compressed_cost': compressed_cost,
|
| 255 |
+
'original_cost': original_cost,
|
| 256 |
+
'savings': savings,
|
| 257 |
+
'savings_percent': savings_percent
|
| 258 |
+
}
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
def get_cache_key(prompt, duration, guidance_scale):
|
| 262 |
+
return f"{hash(prompt)}_{duration}_{guidance_scale}"
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def generate_music_batch(text_prompt, duration=10, guidance_scale=3.0, model_mode="compressed"):
|
| 266 |
+
try:
|
| 267 |
+
cache_key = get_cache_key(text_prompt, duration, guidance_scale)
|
| 268 |
+
|
| 269 |
+
generator, processor = load_model()
|
| 270 |
+
model_name = "Compressed (S)"
|
| 271 |
+
|
| 272 |
+
print(f"[GENERATION] Starting batch generation using {model_name} model...")
|
| 273 |
+
print(f"[GENERATION] Prompt: '{text_prompt}'")
|
| 274 |
+
print(f"[GENERATION] Duration: {duration}s")
|
| 275 |
+
print(f"[GENERATION] Guidance scale: {guidance_scale}")
|
| 276 |
+
|
| 277 |
+
cleanup_gpu()
|
| 278 |
+
set_seed(42)
|
| 279 |
+
print(f"[GENERATION] Using seed: 42")
|
| 280 |
+
|
| 281 |
+
max_new_tokens = calculate_max_tokens(duration)
|
| 282 |
+
|
| 283 |
+
generation_params = {
|
| 284 |
+
'do_sample': True,
|
| 285 |
+
'guidance_scale': guidance_scale,
|
| 286 |
+
'max_new_tokens': max_new_tokens,
|
| 287 |
+
'min_new_tokens': max_new_tokens,
|
| 288 |
+
'cache_implementation': 'paged',
|
| 289 |
+
}
|
| 290 |
+
|
| 291 |
+
prompts = [text_prompt] * 4
|
| 292 |
+
start_time = time.time()
|
| 293 |
+
outputs = generator(
|
| 294 |
+
prompts,
|
| 295 |
+
batch_size=4,
|
| 296 |
+
generate_kwargs=generation_params
|
| 297 |
+
)
|
| 298 |
+
generation_time = time.time() - start_time
|
| 299 |
+
|
| 300 |
+
print(f"[GENERATION] Batch generation completed in {generation_time:.2f}s")
|
| 301 |
+
|
| 302 |
+
audio_variants = []
|
| 303 |
+
sample_rate = outputs[0]['sampling_rate']
|
| 304 |
+
|
| 305 |
+
for i, output in enumerate(outputs):
|
| 306 |
+
audio_data = output['audio']
|
| 307 |
+
|
| 308 |
+
print(f"[GENERATION] Processing variant {i+1} audio shape: {audio_data.shape}")
|
| 309 |
+
|
| 310 |
+
if hasattr(audio_data, 'cpu'):
|
| 311 |
+
audio_data = audio_data.cpu().numpy()
|
| 312 |
+
|
| 313 |
+
if len(audio_data.shape) == 3:
|
| 314 |
+
audio_data = audio_data[0]
|
| 315 |
+
|
| 316 |
+
if len(audio_data.shape) == 2:
|
| 317 |
+
if audio_data.shape[0] < audio_data.shape[1]:
|
| 318 |
+
audio_data = audio_data.T
|
| 319 |
+
if audio_data.shape[1] > 1:
|
| 320 |
+
audio_data = audio_data[:, 0]
|
| 321 |
+
else:
|
| 322 |
+
audio_data = audio_data.flatten()
|
| 323 |
+
|
| 324 |
+
audio_data = audio_data.flatten()
|
| 325 |
+
|
| 326 |
+
max_val = np.max(np.abs(audio_data))
|
| 327 |
+
if max_val > 0:
|
| 328 |
+
audio_data = audio_data / max_val * 0.95
|
| 329 |
+
|
| 330 |
+
audio_data = (audio_data * 32767).astype(np.int16)
|
| 331 |
+
audio_variants.append((sample_rate, audio_data))
|
| 332 |
+
|
| 333 |
+
print(f"[GENERATION] Variant {i+1} final shape: {audio_data.shape}")
|
| 334 |
+
|
| 335 |
+
comparison_message = ""
|
| 336 |
+
|
| 337 |
+
if cache_key in original_time_cache:
|
| 338 |
+
original_time = original_time_cache[cache_key]
|
| 339 |
+
cost_info = calculate_cost_savings(generation_time, original_time)
|
| 340 |
+
|
| 341 |
+
comparison_message = f"π° Cost Savings: ${cost_info['savings']:.4f} ({cost_info['savings_percent']:.1f}%) - Compressed: ${cost_info['compressed_cost']:.4f} vs Original: ${cost_info['original_cost']:.4f}"
|
| 342 |
+
print(f"[COST] Savings: ${cost_info['savings']:.4f} ({cost_info['savings_percent']:.1f}%)")
|
| 343 |
+
else:
|
| 344 |
+
try:
|
| 345 |
+
print(f"[TIMING] Measuring original model speed for comparison...")
|
| 346 |
+
original_generator, original_processor = load_original_model()
|
| 347 |
+
|
| 348 |
+
original_start = time.time()
|
| 349 |
+
original_outputs = original_generator(
|
| 350 |
+
prompts,
|
| 351 |
+
batch_size=4,
|
| 352 |
+
generate_kwargs=generation_params
|
| 353 |
+
)
|
| 354 |
+
original_time = time.time() - original_start
|
| 355 |
+
|
| 356 |
+
original_time_cache[cache_key] = original_time
|
| 357 |
+
|
| 358 |
+
cost_info = calculate_cost_savings(generation_time, original_time)
|
| 359 |
+
comparison_message = f"π° Cost Savings: ${cost_info['savings']:.4f} ({cost_info['savings_percent']:.1f}%) - Compressed: ${cost_info['compressed_cost']:.4f} vs Original: ${cost_info['original_cost']:.4f}"
|
| 360 |
+
print(f"[COST] First comparison - Savings: ${cost_info['savings']:.4f} ({cost_info['savings_percent']:.1f}%)")
|
| 361 |
+
print(f"[TIMING] Original: {original_time:.2f}s, Compressed: {generation_time:.2f}s")
|
| 362 |
+
|
| 363 |
+
del original_generator, original_processor
|
| 364 |
+
cleanup_gpu()
|
| 365 |
+
print(f"[CLEANUP] Original model cleaned up after timing measurement")
|
| 366 |
+
|
| 367 |
+
except Exception as e:
|
| 368 |
+
print(f"[WARNING] Could not measure original timing: {e}")
|
| 369 |
+
compressed_cost = calculate_generation_cost(generation_time, 'S')
|
| 370 |
+
comparison_message = f"πΈ Compressed Cost: ${compressed_cost:.4f} (could not compare with original)"
|
| 371 |
+
|
| 372 |
+
generation_info = f"β
Generated 4 variants in {generation_time:.2f}s\n{comparison_message}"
|
| 373 |
+
|
| 374 |
+
return audio_variants[0], audio_variants[1], audio_variants[2], audio_variants[3], generation_info
|
| 375 |
+
|
| 376 |
+
except Exception as e:
|
| 377 |
+
print(f"[ERROR] Batch generation failed: {str(e)}")
|
| 378 |
+
cleanup_gpu()
|
| 379 |
+
error_msg = f"β Generation failed: {str(e)}"
|
| 380 |
+
return None, None, None, None, error_msg
|
| 381 |
+
|
| 382 |
+
|
| 383 |
with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
|
| 384 |
gr.Markdown("# π΅ MusicGen Large Music Generator")
|
| 385 |
+
gr.Markdown("Generate music from text descriptions using Facebook's MusicGen Large model accelerated by TheStage for 2.3x faster performance")
|
| 386 |
|
| 387 |
with gr.Row():
|
| 388 |
with gr.Column():
|
|
|
|
| 392 |
lines=3,
|
| 393 |
value="A groovy funk bassline with a tight drum beat"
|
| 394 |
)
|
| 395 |
+
|
| 396 |
with gr.Row():
|
| 397 |
duration = gr.Slider(
|
| 398 |
minimum=5,
|
|
|
|
| 410 |
info="Higher values follow prompt more closely"
|
| 411 |
)
|
| 412 |
|
| 413 |
+
generate_btn = gr.Button("π΅ Generate 4 Music Variants", variant="primary", size="lg")
|
| 414 |
|
| 415 |
with gr.Column():
|
| 416 |
+
generation_info = gr.Markdown("Ready to generate music variants with cost comparison vs original model")
|
| 417 |
+
|
| 418 |
+
with gr.Row():
|
| 419 |
+
audio_output1 = gr.Audio(label="Variant 1", type="numpy")
|
| 420 |
+
audio_output2 = gr.Audio(label="Variant 2", type="numpy")
|
| 421 |
+
|
| 422 |
+
with gr.Row():
|
| 423 |
+
audio_output3 = gr.Audio(label="Variant 3", type="numpy")
|
| 424 |
+
audio_output4 = gr.Audio(label="Variant 4", type="numpy")
|
| 425 |
|
| 426 |
with gr.Accordion("Tips", open=False):
|
| 427 |
gr.Markdown("""
|
|
|
|
| 431 |
- Duration is limited to 30 seconds for faster generation
|
| 432 |
""")
|
| 433 |
|
| 434 |
+
def generate_simple(text_prompt, duration, guidance_scale):
|
| 435 |
+
return generate_music_batch(text_prompt, duration, guidance_scale, "compressed")
|
| 436 |
+
|
| 437 |
generate_btn.click(
|
| 438 |
+
fn=generate_simple,
|
| 439 |
inputs=[text_input, duration, guidance_scale],
|
| 440 |
+
outputs=[audio_output1, audio_output2, audio_output3, audio_output4, generation_info],
|
| 441 |
show_progress=True
|
| 442 |
)
|
| 443 |
|
requirements.txt
CHANGED
|
@@ -4,6 +4,7 @@
|
|
| 4 |
|
| 5 |
torch
|
| 6 |
thestage
|
| 7 |
-
elastic_models[nvidia]
|
| 8 |
scipy
|
| 9 |
transformers
|
|
|
|
|
|
| 4 |
|
| 5 |
torch
|
| 6 |
thestage
|
| 7 |
+
# elastic_models[nvidia]
|
| 8 |
scipy
|
| 9 |
transformers
|
| 10 |
+
soundfile
|