Spaces:
Paused
Paused
| from transformers import pipeline | |
| import gradio as gr | |
| # Load your model with pipeline | |
| pipe = pipeline("text-generation", model="prithivMLmods/rStar-Coder-Qwen3-0.6B") | |
| # Keep a conversation history | |
| history = [] | |
| def chat_fn(user_input): | |
| global history | |
| # Add user message | |
| history.append(f"User: {user_input}") | |
| # Combine all previous messages as context | |
| context = "\n".join(history) + "\nBot:" | |
| # Generate response | |
| output = pipe(context, max_new_tokens=200, do_sample=True, top_p=0.9)[0]['generated_text'] | |
| # Extract only the bot's reply (after last "Bot:") | |
| bot_reply = output.split("Bot:")[-1].strip() | |
| # Add bot reply to history | |
| history.append(f"Bot: {bot_reply}") | |
| return bot_reply | |
| # Gradio interface | |
| with gr.Blocks() as demo: | |
| chatbot_ui = gr.Chatbot() | |
| msg = gr.Textbox(placeholder="Type a message...") | |
| def respond(user_input, chat_history): | |
| reply = chat_fn(user_input) | |
| chat_history.append((user_input, reply)) | |
| return chat_history, chat_history | |
| state = gr.State([]) # store chat history in Gradio | |
| msg.submit(respond, [msg, state], [chatbot_ui, state]) | |
| demo.launch() | |