Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import random
|
| 3 |
+
import time
|
| 4 |
+
from rank_bm25 import BM25Okapi, BM25Plus
|
| 5 |
+
import re
|
| 6 |
+
import numpy as np
|
| 7 |
+
from underthesea import text_normalize
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from pyvi import ViTokenizer
|
| 10 |
+
import heapq
|
| 11 |
+
import torch
|
| 12 |
+
from transformers import AutoModel, AutoTokenizer
|
| 13 |
+
from pyvi.ViTokenizer import tokenize
|
| 14 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 15 |
+
from sentence_transformers import CrossEncoder
|
| 16 |
+
import heapq
|
| 17 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 18 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
| 19 |
+
from sentence_transformers import SentenceTransformer
|
| 20 |
+
from pyvi.ViTokenizer import tokenize
|
| 21 |
+
from Levenshtein import ratio as lev
|
| 22 |
+
from Levenshtein import ratio as lev
|
| 23 |
+
from openai import OpenAI
|
| 24 |
+
import re
|
| 25 |
+
import numpy as np
|
| 26 |
+
from underthesea import text_normalize
|
| 27 |
+
|
| 28 |
+
def chuan_hoa_unicode_go_dau(text):
|
| 29 |
+
return text_normalize(text)
|
| 30 |
+
|
| 31 |
+
def viet_thuong(text):
|
| 32 |
+
return text.lower()
|
| 33 |
+
|
| 34 |
+
def chuan_hoa_dau_cau(text):
|
| 35 |
+
text = re.sub(r'[^\s\wáàảãạăắằẳẵặâấầẩẫậéèẻẽẹêếềểễệóòỏõọôốồổỗộơớờởỡợíìỉĩịúùủũụưứừửữựýỳỷỹỵđ_]',' ',text)
|
| 36 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
| 37 |
+
return text
|
| 38 |
+
|
| 39 |
+
def chuan_hoa_cau(doc):
|
| 40 |
+
pattern = r'(\w)([^\s\w])'
|
| 41 |
+
result1 = re.sub(pattern, r'\1 \2', doc)
|
| 42 |
+
|
| 43 |
+
pattern = r'([^\s\w])(\w)'
|
| 44 |
+
result2 = re.sub(pattern, r'\1 \2', result1)
|
| 45 |
+
|
| 46 |
+
pattern = r'\s+'
|
| 47 |
+
# Loại bỏ khoảng trắng thừa
|
| 48 |
+
result = re.sub(pattern, ' ', result2)
|
| 49 |
+
return result
|
| 50 |
+
|
| 51 |
+
def my_pre_processing(doc):
|
| 52 |
+
doc = chuan_hoa_unicode_go_dau(doc)
|
| 53 |
+
doc = chuan_hoa_dau_cau(doc)
|
| 54 |
+
doc = chuan_hoa_cau(doc)
|
| 55 |
+
doc = viet_thuong(doc)
|
| 56 |
+
return doc
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def levenshtein_similarity(sentence1, sentence2):
|
| 60 |
+
return lev(sentence1, sentence2)
|
| 61 |
+
|
| 62 |
+
def jaccard_similarity(sentence1, sentence2):
|
| 63 |
+
# Tokenize sentences into words
|
| 64 |
+
words1 = set(sentence1.lower().split())
|
| 65 |
+
words2 = set(sentence2.lower().split())
|
| 66 |
+
|
| 67 |
+
# Calculate intersection and union of the sets
|
| 68 |
+
intersection = len(words1.intersection(words2))
|
| 69 |
+
union = len(words1.union(words2))
|
| 70 |
+
|
| 71 |
+
# Calculate Jaccard Similarity
|
| 72 |
+
jaccard_similarity = intersection / union
|
| 73 |
+
|
| 74 |
+
# Define min and max Jaccard similarity scores (0 and 1.0 in this case)
|
| 75 |
+
min_score = 0.0
|
| 76 |
+
max_score = 1.0
|
| 77 |
+
|
| 78 |
+
# Normalize Jaccard Similarity to range from 0 to 1.0
|
| 79 |
+
normalized_similarity = (jaccard_similarity - min_score) / (max_score - min_score)
|
| 80 |
+
|
| 81 |
+
return normalized_similarity
|
| 82 |
+
|
| 83 |
+
def filter_similarity(sentence1, sentence2, debug = False):
|
| 84 |
+
score_leve = levenshtein_similarity(sentence1, sentence2)
|
| 85 |
+
score_jac = jaccard_similarity(sentence1, sentence2)
|
| 86 |
+
|
| 87 |
+
if debug:
|
| 88 |
+
print(sentence2)
|
| 89 |
+
print("Levenshtein similarity", score_leve)
|
| 90 |
+
print("Jaccard similarity", score_jac)
|
| 91 |
+
|
| 92 |
+
return (score_leve + score_jac) / 2
|
| 93 |
+
|
| 94 |
+
def top_n_indexes(lst, n):
|
| 95 |
+
top_items = heapq.nlargest(n, enumerate(lst), key=lambda x: x[1])
|
| 96 |
+
return [i for i, s in top_items]
|
| 97 |
+
|
| 98 |
+
def BM25_retrieval(query, seg_question_corpus, top_BM25):
|
| 99 |
+
query = my_pre_processing(query)
|
| 100 |
+
word_tokenized_query = ViTokenizer.tokenize(query).split(" ")
|
| 101 |
+
# xử lý ở level word với question
|
| 102 |
+
tokenized_word_question_corpus = [doc.split(" ") for doc in seg_question_corpus]
|
| 103 |
+
bm25_word_question = BM25Plus(tokenized_word_question_corpus)
|
| 104 |
+
word_score_question = bm25_word_question.get_scores(word_tokenized_query)
|
| 105 |
+
BM25_result = top_n_indexes(word_score_question, n=top_BM25)
|
| 106 |
+
return BM25_result
|
| 107 |
+
|
| 108 |
+
def SimCSE_retrieval(query, SimCSE_set, top_Sim):
|
| 109 |
+
from sentence_transformers import CrossEncoder
|
| 110 |
+
query = my_pre_processing(query)
|
| 111 |
+
# Sim_CSE_model_question = SentenceTransformer('VoVanPhuc/sup-SimCSE-VietNamese-phobert-base')
|
| 112 |
+
# Sim_CSE_word_ques_embeddings = torch.load('/content/drive/MyDrive/Study/Năm 3/CS336-IR/model/word_ques_embeddings.pth')
|
| 113 |
+
Sim_CSE_model_question = SimCSE_set[0]
|
| 114 |
+
Sim_CSE_word_ques_embeddings = SimCSE_set[1]
|
| 115 |
+
|
| 116 |
+
seg_query = ViTokenizer.tokenize(query)
|
| 117 |
+
query_vector = Sim_CSE_model_question.encode(seg_query)
|
| 118 |
+
SimCSE_word_scores = list(cosine_similarity([query_vector], Sim_CSE_word_ques_embeddings)[0])
|
| 119 |
+
SimCSE_result = top_n_indexes(SimCSE_word_scores, n=top_Sim)
|
| 120 |
+
return SimCSE_result
|
| 121 |
+
|
| 122 |
+
def Para_retriveval(query, para_set, top_para):
|
| 123 |
+
query = my_pre_processing(query)
|
| 124 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
| 125 |
+
import torch
|
| 126 |
+
# retri_model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
| 127 |
+
# para_question_embeddings = torch.load('/content/drive/MyDrive/Study/Năm 3/CS336-IR/model/para_embeddings.pth')
|
| 128 |
+
retri_model = para_set[0]
|
| 129 |
+
para_question_embeddings = para_set[1]
|
| 130 |
+
|
| 131 |
+
query_embed = retri_model.encode([query], device = device)
|
| 132 |
+
para_score = cosine_similarity(query_embed, para_question_embeddings)[0]
|
| 133 |
+
Para_result = top_n_indexes(para_score, n = top_para)
|
| 134 |
+
return Para_result
|
| 135 |
+
|
| 136 |
+
def Rerank(query, retrieval_result, question_corpus, reranker, top_n):
|
| 137 |
+
#rerank_model_name = 'unicamp-dl/mMiniLM-L6-v2-mmarco-v2'
|
| 138 |
+
query = my_pre_processing(query)
|
| 139 |
+
#reranker = CrossEncoder(rerank_model_name)
|
| 140 |
+
scores = reranker.predict([(query, question_corpus[i]) for i in retrieval_result])
|
| 141 |
+
id_score = list(zip(retrieval_result, scores))
|
| 142 |
+
sorted_id_score = sorted(id_score, key=lambda x: x[1], reverse=True)[:(min(len(retrieval_result), top_n))]
|
| 143 |
+
return sorted_id_score
|
| 144 |
+
|
| 145 |
+
def retrieval(query, question_corpus, seg_question_corpus, models, top_n = 15, thread_hold = 0.2, rerank = True):
|
| 146 |
+
BM25_result = BM25_retrieval(query, seg_question_corpus, top_n)
|
| 147 |
+
SimCSE_result = SimCSE_retrieval(query, models['Sim_CSE'], top_n)
|
| 148 |
+
Para_result = Para_retriveval(query, models['para'], top_n)
|
| 149 |
+
retrieval_result = list(set(BM25_result + SimCSE_result + Para_result))
|
| 150 |
+
#sents_retri = [question_corpus[i] for i in retrieval_result]
|
| 151 |
+
|
| 152 |
+
scores_filter = []
|
| 153 |
+
while len(scores_filter) == 0 and thread_hold >= 0:
|
| 154 |
+
scores_filter = []
|
| 155 |
+
for id in retrieval_result:
|
| 156 |
+
score = filter_similarity(my_pre_processing(query), question_corpus[id])
|
| 157 |
+
if score >= thread_hold:
|
| 158 |
+
scores_filter.append((score, id))
|
| 159 |
+
thread_hold -= 0.1
|
| 160 |
+
scores_filter = sorted(scores_filter, key = lambda x : x[0], reverse=True)
|
| 161 |
+
sent_filter = [i[1] for i in scores_filter]
|
| 162 |
+
|
| 163 |
+
if rerank == False:
|
| 164 |
+
return retrieval_result
|
| 165 |
+
rerank_result = Rerank(query, sent_filter, question_corpus, models['rerank'], top_n)
|
| 166 |
+
sent_rerank = [i[0] for i in rerank_result]
|
| 167 |
+
sent_rerank.append(-1)
|
| 168 |
+
|
| 169 |
+
score_rerank = [i[1] for i in rerank_result]
|
| 170 |
+
score_rerank = [(i - min(score_rerank))/(max(score_rerank) - min(score_rerank)) for i in score_rerank]
|
| 171 |
+
data_rerank = {}
|
| 172 |
+
for i in sent_rerank:
|
| 173 |
+
data_rerank[i] = []
|
| 174 |
+
|
| 175 |
+
for idx, id in enumerate(sent_rerank):
|
| 176 |
+
for j in range(idx + 1, len(sent_rerank)):
|
| 177 |
+
if id == -1:
|
| 178 |
+
sent1 = my_pre_processing(query)
|
| 179 |
+
else:
|
| 180 |
+
sent1 = question_corpus[id]
|
| 181 |
+
|
| 182 |
+
if sent_rerank[j] == -1:
|
| 183 |
+
sent2 = my_pre_processing(query)
|
| 184 |
+
else:
|
| 185 |
+
sent2 = question_corpus[sent_rerank[j]]
|
| 186 |
+
|
| 187 |
+
score = filter_similarity(sent1, sent2) * score_rerank[idx]
|
| 188 |
+
data_rerank[id].append(score)
|
| 189 |
+
data_rerank[sent_rerank[j]].append(score)
|
| 190 |
+
|
| 191 |
+
del data_rerank[-1]
|
| 192 |
+
data_rerank = {key: sum(data)/len(data) for key, data in data_rerank.items()}
|
| 193 |
+
scores_rerank = [{'corpus_id': key, 'score': score} for key, score in sorted(data_rerank.items(), key = lambda x: x[1], reverse = True)]
|
| 194 |
+
|
| 195 |
+
return scores_rerank
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
client = OpenAI(
|
| 200 |
+
# defaults to os.environ.get("OPENAI_API_KEY")
|
| 201 |
+
api_key="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",
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
def chat_gpt(prompt):
|
| 205 |
+
response = client.chat.completions.create(
|
| 206 |
+
model="gpt-3.5-turbo",
|
| 207 |
+
messages=[{"role": "user", "content": prompt}]
|
| 208 |
+
)
|
| 209 |
+
return response.choices[0].message.content.strip()
|
| 210 |
+
|
| 211 |
+
if torch.cuda.is_available():
|
| 212 |
+
device = 'cuda'
|
| 213 |
+
else:
|
| 214 |
+
device = 'cpu'
|
| 215 |
+
|
| 216 |
+
df = pd.read_csv('.\source\corpus.csv')
|
| 217 |
+
question_corpus = list(df['question_corpus'])
|
| 218 |
+
seg_question_corpus = list(df['seg_question_corpus'])
|
| 219 |
+
Sim_CSE_model = SentenceTransformer('VoVanPhuc/sup-SimCSE-VietNamese-phobert-base')
|
| 220 |
+
Sim_CSE_word_ques_embeddings = torch.load('.\source\word_ques_embeddings.pth')
|
| 221 |
+
|
| 222 |
+
para_model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
| 223 |
+
para_question_embeddings = torch.load('.\source\para_embeddings.pth')
|
| 224 |
+
|
| 225 |
+
rerank_model = CrossEncoder('unicamp-dl/mMiniLM-L6-v2-mmarco-v2')
|
| 226 |
+
|
| 227 |
+
models = {'rerank': rerank_model, 'para': [para_model, para_question_embeddings], 'Sim_CSE': [Sim_CSE_model, Sim_CSE_word_ques_embeddings]}
|
| 228 |
+
source_corpus = pd.read_csv("./source/new_tthc.csv")
|
| 229 |
+
|
| 230 |
+
def RAG(query):
|
| 231 |
+
answer = {'query': query}
|
| 232 |
+
retri_result = retrieval(query, question_corpus, seg_question_corpus, models, top_n = 25, rerank = True)
|
| 233 |
+
if len(retri_result) == 0:
|
| 234 |
+
answer['answer'] = "Không tìm thấy thủ tục hành chính phù hợp"
|
| 235 |
+
return answer
|
| 236 |
+
corpus_id = retri_result[0]['corpus_id']
|
| 237 |
+
info = source_corpus.loc[corpus_id]
|
| 238 |
+
answer['tthc'] = info['PROCEDURE_NAME']
|
| 239 |
+
prompt = f"Chỉ dựa vào thông tin ngữ cảnh tôi cung cấp để trả lời câu hỏi. Chú ý giản cách dòng hợp lý: \n Câu hỏi: {answer['query']} \n Ngữ cảnh: {info['IMPL_ORDER']}"
|
| 240 |
+
#print("RAG function Propmt", prompt)
|
| 241 |
+
answer['answer'] = chat_gpt(prompt)
|
| 242 |
+
answer['reference'] = f"https://dichvucong.gov.vn/p/home/dvc-tthc-thu-tuc-hanh-chinh-chi-tiet.html?ma_thu_tuc={info['ID']}"
|
| 243 |
+
return answer
|
| 244 |
+
|
| 245 |
+
#print(RAG("tôi muốn biết cách làm biển sổ xe lần lần đầu"))
|
| 246 |
+
with gr.Blocks() as demo:
|
| 247 |
+
chatbot = gr.Chatbot()
|
| 248 |
+
msg = gr.Textbox()
|
| 249 |
+
clear = gr.ClearButton([msg, chatbot])
|
| 250 |
+
|
| 251 |
+
def respond(message, chat_history):
|
| 252 |
+
answer = RAG(message)
|
| 253 |
+
bot_message = f"Tên thủ tục hành chính: {answer['tthc']}\nCâu trả lời:\n{answer['answer']}\nNguồn: {answer['reference']}"
|
| 254 |
+
chat_history.append((message, bot_message))
|
| 255 |
+
time.sleep(2)
|
| 256 |
+
return "", chat_history
|
| 257 |
+
|
| 258 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
| 259 |
+
|
| 260 |
+
if __name__ == "__main__":
|
| 261 |
+
demo.launch(inline = False)
|