Spaces:
Running
Running
Update src/translate/Translate.py
Browse files- src/translate/Translate.py +16 -7
src/translate/Translate.py
CHANGED
|
@@ -74,14 +74,23 @@ def gemma(requestValue: str, model: str = 'Gargaz/gemma-2b-romanian-better'):
|
|
| 74 |
|
| 75 |
def gemma_direct(requestValue: str, model: str = 'Gargaz/gemma-2b-romanian-better'):
|
| 76 |
# Load model directly
|
| 77 |
-
if '/'
|
| 78 |
-
model = 'Gargaz/gemma-2b-romanian-better'
|
| 79 |
# limit max_new_tokens to 150% of the requestValue
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
tokenizer = AutoTokenizer.from_pretrained("Gargaz/gemma-2b-romanian-better")
|
| 84 |
-
model = AutoModelForCausalLM.from_pretrained("Gargaz/gemma-2b-romanian-better")
|
| 85 |
|
| 86 |
inputs = tokenizer.apply_chat_template(
|
| 87 |
messages,
|
|
@@ -91,6 +100,6 @@ def gemma_direct(requestValue: str, model: str = 'Gargaz/gemma-2b-romanian-bette
|
|
| 91 |
return_tensors="pt",
|
| 92 |
).to(device)
|
| 93 |
|
| 94 |
-
outputs = model.generate(**inputs, max_new_tokens=
|
| 95 |
response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
|
| 96 |
return response, model
|
|
|
|
| 74 |
|
| 75 |
def gemma_direct(requestValue: str, model: str = 'Gargaz/gemma-2b-romanian-better'):
|
| 76 |
# Load model directly
|
| 77 |
+
model = model if '/' in model else 'Gargaz/gemma-2b-romanian-better'
|
|
|
|
| 78 |
# limit max_new_tokens to 150% of the requestValue
|
| 79 |
+
prompt = f"Translate this text to Romanian: {request_value}"
|
| 80 |
+
|
| 81 |
+
input_ids = tokenizer.encode(request_value, add_special_tokens=True)
|
| 82 |
+
num_tokens = len(input_ids)
|
| 83 |
+
# Estimate output length (e.g., 50% longer)
|
| 84 |
+
max_new_tokens = int(num_tokens * 1.5)
|
| 85 |
+
max_new_tokens += max_new_tokens % 2 # ensure it's even
|
| 86 |
+
|
| 87 |
+
# Token count estimation and safety check
|
| 88 |
+
# max_new_tokens = int(len(request_value) * 1.5)
|
| 89 |
+
# max_new_tokens += max_new_tokens % 2 # ensure it's even
|
| 90 |
+
|
| 91 |
+
messages = [{"role": "user", "content": prompt]
|
| 92 |
tokenizer = AutoTokenizer.from_pretrained("Gargaz/gemma-2b-romanian-better")
|
| 93 |
+
model = AutoModelForCausalLM.from_pretrained("Gargaz/gemma-2b-romanian-better").to(device)
|
| 94 |
|
| 95 |
inputs = tokenizer.apply_chat_template(
|
| 96 |
messages,
|
|
|
|
| 100 |
return_tensors="pt",
|
| 101 |
).to(device)
|
| 102 |
|
| 103 |
+
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
|
| 104 |
response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
|
| 105 |
return response, model
|