File size: 13,020 Bytes
cb94f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4205025
cb94f9b
 
 
 
4205025
 
cb94f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6f2697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import torch
import torch.nn as nn
import pickle



class Deck_Attention(nn.Module):
    def __init__(self, input_size, output_dim, num_heads=8, num_layers=3, output_layers = 2, dropout=0.2):
        super(Deck_Attention, self).__init__()
    
        # Input projection and normalization
        self.hidden_dim = 1024
        self.input_proj = nn.Linear(input_size, self.hidden_dim, bias = False)
        self.input_norm = nn.LayerNorm(self.hidden_dim, bias = False)
        self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_dim))
        self.pos_encoding = nn.Embedding(45, self.hidden_dim)
        

        encoder_layer = nn.TransformerEncoderLayer(
            d_model= self.hidden_dim,
            nhead = num_heads,
            dim_feedforward= self.hidden_dim * 4,
            dropout=dropout,
            activation='gelu',
            batch_first=True,
            norm_first=True,
        )
        self.layers = nn.TransformerEncoder(encoder_layer, 
                                            num_layers=num_layers,
                                            enable_nested_tensor=False,
                                            )
        self.transformer_norm = nn.LayerNorm(self.hidden_dim, bias = False)
        # Output projection
        self.output_proj = nn.ModuleList(
            [nn.Sequential(
                        nn.Linear(self.hidden_dim, self.hidden_dim, bias = False),
                        nn.GELU(),
                        nn.LayerNorm(self.hidden_dim, bias = False),
                        nn.Dropout(dropout)            ) for _ in range(output_layers)])

        self.final_layer = nn.Sequential(
            nn.Linear(self.hidden_dim, self.hidden_dim, bias = False),
            nn.LayerNorm(self.hidden_dim, bias = False),
            nn.GELU(),
            nn.Linear(self.hidden_dim, output_dim, bias = False))

    def forward(self, x, lens=None):
        # Reshape input if needed
        x = x.view(x.size(0), x.size(-2), x.size(-1))
        batch_size = x.size(0)

        
        # Create padding mask
        padding_mask = None
        if lens is not None:
            lens = lens.to(x.device)
            padding_mask = torch.arange(45, device=x.device).expand(batch_size, 45) >= lens.unsqueeze(1)
            padding_mask = torch.cat((torch.zeros(padding_mask.shape[0], 1, device= padding_mask.device).bool(), padding_mask), dim = 1)
        
        # Initial projection and add position embeddings
        x = self.input_proj(x)

        pos = torch.arange(45, device=x.device).expand(batch_size, 45)
        pos = self.pos_encoding(pos)
        x = x + pos
        x = torch.cat([self.cls_token.expand(batch_size, -1, -1), x], dim=1)
        x = self.input_norm(x)
        
        x = self.layers(x, src_key_padding_mask=padding_mask)
        x = self.transformer_norm(x)

        
        x = x[:, 0, :]
        for layer in self.output_proj:
            x = x+ layer(x)

        x = self.final_layer(x)
        return x


class Card_Preprocessing(nn.Module):
    def __init__(self, num_layers, input_size, output_size, nonlinearity = nn.GELU, internal_size = 1024, dropout = 0):
        super(Card_Preprocessing,self).__init__()
        self.internal_size = internal_size
        self.input = nn.Sequential(
                        nn.Linear(input_size,internal_size, bias = False),
                        nonlinearity(),
                        nn.LayerNorm(internal_size, bias = False),
                        nn.Dropout(dropout),
                    )
        self.hidden_layers = nn.ModuleList()
        self.dropout_rate = dropout
        for i in range(num_layers):
            self.hidden_layers.append(nn.Sequential(
                            nn.Linear(internal_size,internal_size, bias = False),
                            nonlinearity(),
                            nn.LayerNorm(internal_size, bias = False),
                            nn.Dropout(dropout),
                        ))
        self.output = nn.Sequential(
                        nn.Linear(internal_size,output_size, bias = False),
                        nonlinearity(),
                        nn.LayerNorm(output_size, bias = False)
                    )
        self.gammas = nn.ParameterList([torch.nn.Parameter(torch.ones(1, internal_size), requires_grad = True) for i in range(num_layers)])

    def forward(self,x):
        x = self.input(x)
        for i,layer in enumerate(self.hidden_layers):
            gamma = torch.sigmoid(self.gammas[i])
            x = gamma * x + (1-gamma) * layer(x)
        x = self.output(x)
        return x


class CrossAttnBlock(nn.Module):
    """

    One deck→pack cross-attention block, Pre-LayerNorm style.

    cards : [B, K, d]  (queries)

    deck  : [B, D, d]  (keys / values)

    returns updated cards [B, K, d]

    """
    def __init__(self, d_model: int, n_heads: int, dropout: float):
        super().__init__()
        self.ln_q   = nn.LayerNorm(d_model)
        self.ln_k   = nn.LayerNorm(d_model)
        self.ln_v   = nn.LayerNorm(d_model)
        self.xattn  = nn.MultiheadAttention(
            d_model, n_heads,
            dropout=dropout, batch_first=True)
        self.ln_ff  = nn.LayerNorm(d_model)
        self.ffn    = nn.Sequential(
            nn.Linear(d_model, 4 * d_model),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(4 * d_model, d_model),
            nn.Dropout(dropout),
        )
        self.dropout_attn = nn.Dropout(dropout)
        

    def forward(self, cards, deck, mask = None):
        # 1) deck → card cross-attention
        q = self.ln_q(cards)
        k = self.ln_k(deck)
        v = self.ln_v(deck)
        attn_out, _ = self.xattn(q, k, v, key_padding_mask = mask)         # [B, K, d]
        x = cards + self.dropout_attn(attn_out)                      # residual

        # 2) position-wise feed-forward
        y = self.ffn(self.ln_ff(x))
        return x + y           

class MLP_CrossAttention(nn.Module):
    def __init__(self, input_size, num_card_layers, card_output_dim, dropout, **kwargs):
        super(MLP_CrossAttention, self).__init__()
        self.input_size = input_size

        self.card_encoder = Card_Preprocessing(num_card_layers, 
                                input_size = input_size, 
                                internal_size = 1024, 
                                output_size = card_output_dim,
                                dropout = dropout)

        self.attention_layers = nn.ModuleList([
            CrossAttnBlock(card_output_dim, n_heads=4, dropout=dropout)
            for _ in range(10)
        ])

        self.output_layer = nn.Sequential(
            nn.Linear(card_output_dim, card_output_dim*2),
            nn.ReLU(),
            nn.LayerNorm(card_output_dim*2, bias = False),
            nn.Dropout(dropout),

            nn.Linear(card_output_dim*2, card_output_dim*4),
            nn.ReLU(),
            nn.LayerNorm(card_output_dim*4, bias = False),
            nn.Dropout(dropout),

            
            nn.Linear(card_output_dim*4, card_output_dim),
            nn.ReLU(),
            nn.LayerNorm(card_output_dim, bias = False),

            nn.Linear(card_output_dim, 1),
        )
        if kwargs['path'] is not None:
            self.load_state_dict(torch.load(f"{kwargs['path']}/network.pt", map_location='cpu'))
            print(f"Loaded model from {kwargs['path']}/network.pt")

    def forward(self, deck, cards, get_embeddings = False, no_attention = False):
        batch_size, deck_size, card_size = deck.shape
        
        deck = deck.view(batch_size * deck_size, card_size)

        deck_encoded = self.card_encoder(deck)
        deck_encoded = deck_encoded.view(batch_size, deck_size, -1)


        # identify padded cards
        mask = (cards.sum(dim=-1) != 0)
        cards_encoded = self.card_encoder(cards)

        if not no_attention:
            # Cross-attention
            for layer in self.attention_layers:
                cards_encoded = layer(cards_encoded, deck_encoded)

        if get_embeddings:
            for layer in self.output_layer[:-3]:
                cards_encoded = layer(cards_encoded)
            return cards_encoded

        # Output layer
        logits = self.output_layer(cards_encoded)
        # Mask out padded cards
        logits = logits.masked_fill(~mask.unsqueeze(-1), float('-inf'))
        return logits.squeeze(-1)

    def get_card_embedding(self, card_embedding):
        card_embedding = card_embedding.view(1,1, -1)
        empty_deck = torch.zeros((1, 45, self.input_size)).to(card_embedding.device)

        return self.card_encoder(card_embedding).squeeze()

        return self(deck = empty_deck,
                    cards = card_embedding,
                    get_embeddings = True,
                    no_attention = True).squeeze(0)


def get_embedding_dict(path, add_nontransformed = False):
    with open(path, 'rb') as f:
        embedding_dict = pickle.load(f)

    if add_nontransformed:
        embedding_dict_tmp = {}
        for k,v in embedding_dict.items():
            embedding_dict_tmp[k] = v
            if '//' in k: 
                embedding_dict_tmp[k.split(' // ')[0]] = v
        embedding_dict = embedding_dict_tmp
        return embedding_dict_tmp
    return embedding_dict

def get_card_embeddings(card_names, embedding_dict, embedding_size = 1330): 
    embeddings = []
    new_embeddings = {}
    for card in card_names:
        if card == '':
            embeddings.append([])
        elif card == []:
            if type(embedding_size) == tuple:
                channels, height, width = embedding_size
                new_embedding = torch.zeros(1,channels, height, width)
            else:
                new_embedding = torch.zeros(1,embedding_size)
            embeddings.append(new_embedding)

        elif isinstance(card, list):
            if len(card) == 0:
                embeddings.append(None)
                continue
            deck_embedding = []
            for c in card:
                embedding, got_new = get_embedding_of_card(c, embedding_dict)
                deck_embedding.append(embedding)
            try:
                num_cards = len(deck_embedding)
                deck_embedding = torch.stack(deck_embedding)
                if type(embedding_size) == tuple:
                    channels, height, width = embedding_size
                    deck_embedding = deck_embedding.view(num_cards,channels, height, width)
                else:
                    deck_embedding = deck_embedding.view(num_cards,-1)
            except Exception as e:
                raise e
            embeddings.append(deck_embedding)
        else:
            embedding, got_new = get_embedding_of_card(card, embedding_dict)
            embeddings.append(embedding)
    return embeddings

def check_for_basics(card_name, embedding_dict):
    ints = ['1','2','3','4','5']
    basics = ['Mountain','Forest','Swamp','Island','Plains']
    for b in basics:
        if b in card_name:
            for i in ints:
                if card_name == f'{b}_{i}':
                    return b
    return card_name
    
def get_embedding_of_card(card_name, embedding_dict):
    try:
        card_name = check_for_basics(card_name, embedding_dict)
        card_name = card_name.replace('_', ' ')
        card_name = card_name.replace("Sol'kanar","Sol'Kanar")
        if card_name not in embedding_dict and card_name.split(' // ')[0] not in embedding_dict and card_name.replace('A-','') not in embedding_dict:
            # print(f'Requesting new embedding for {card_name}')
            # attributes, text = get_card_representation(card_name = card_name)
            # text_embedding = embedd_text([text]).squeeze()
            # return torch.Tensor(np.concatenate((attributes, text_embedding), axis = 0)), True
            raise Exception(f'Could not find {card_name}')
        else:
            try:
                return torch.Tensor(embedding_dict[card_name]), False
            except:
                try:
                    return torch.Tensor(embedding_dict[card_name.split(' // ')[0]]), False
                except:
                    try:
                        return torch.Tensor(embedding_dict[card_name.replace('_',' ')]), False
                    except:
                        try:
                            return torch.Tensor(embedding_dict[card_name.replace('A-','')]), False
                        except:
                            print(f'Could not find {card_name}')
                            raise Exception
    except Exception as e:
        print(f'Could not find {card_name}')
        print(e)
        raise e