Spaces:
Running
Running
Update index.html
Browse files- index.html +652 -18
index.html
CHANGED
|
@@ -1,19 +1,653 @@
|
|
| 1 |
-
<!
|
| 2 |
-
<html>
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
</html>
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="utf-8" />
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
| 6 |
+
<title>PyTorch × Transformers Journey</title>
|
| 7 |
+
|
| 8 |
+
<!-- Google Fonts -->
|
| 9 |
+
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;800&family=Fira+Code:wght@400;600&display=swap" rel="stylesheet" />
|
| 10 |
+
|
| 11 |
+
<!-- Reveal.js core & dark theme base -->
|
| 12 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/reset.css" />
|
| 13 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/reveal.css" />
|
| 14 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/theme/black.css" id="theme" />
|
| 15 |
+
|
| 16 |
+
<!-- Highlight.js -->
|
| 17 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/highlight.js@11.9.0/styles/github-dark.min.css" />
|
| 18 |
+
|
| 19 |
+
<!-- Animations -->
|
| 20 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/animate.css@4/animate.min.css" />
|
| 21 |
+
|
| 22 |
+
<style>
|
| 23 |
+
:root {
|
| 24 |
+
--accent-primary: #ee4c2c; /* PyTorch orange‑red */
|
| 25 |
+
--accent-secondary: #ffb347; /* lighter highlight */
|
| 26 |
+
--bg-gradient-start: #1b1b1b;
|
| 27 |
+
--bg-gradient-end: #242424;
|
| 28 |
+
}
|
| 29 |
+
html, body { font-family: 'Inter', sans-serif; }
|
| 30 |
+
.reveal .slides {
|
| 31 |
+
background: linear-gradient(135deg, var(--bg-gradient-start), var(--bg-gradient-end));
|
| 32 |
+
}
|
| 33 |
+
.reveal h1, .reveal h2, .reveal h3 { color: var(--accent-primary); font-weight: 800; letter-spacing: -0.5px; }
|
| 34 |
+
.reveal pre code { font-family: 'Fira Code', monospace; font-size: 0.75em; }
|
| 35 |
+
.reveal section img, .reveal section svg { border-radius: 1rem; box-shadow: 0 8px 22px rgba(0,0,0,0.4); }
|
| 36 |
+
.fragment.highlight-current-blue.visible { color: var(--accent-secondary) !important; }
|
| 37 |
+
/* slide-density patch */
|
| 38 |
+
.reveal h1 { font-size: 2.6rem; line-height: 1.1; }
|
| 39 |
+
.reveal h2 { font-size: 1.9rem; line-height: 1.15; }
|
| 40 |
+
.reveal h3 { font-size: 1.4rem; line-height: 1.2; }
|
| 41 |
+
.reveal p, .reveal li { font-size: 1.7rem; line-height: 1.35; }
|
| 42 |
+
.reveal pre code { font-size: 0.67em; }
|
| 43 |
+
@media (max-width: 1024px) { .reveal h1{font-size:2.2rem;} .reveal h2{font-size:1.6rem;} }
|
| 44 |
+
.reveal table td, .reveal table th { font-size: 0.85rem; padding: 4px 8px; }
|
| 45 |
+
body::after {
|
| 46 |
+
content: "";
|
| 47 |
+
position: fixed;
|
| 48 |
+
bottom: 3.5em;
|
| 49 |
+
left: 3.5em;
|
| 50 |
+
width: 270px; /* desired size */
|
| 51 |
+
height: 117px;
|
| 52 |
+
background-image: url(assets/py2.png);
|
| 53 |
+
background-size: contain;
|
| 54 |
+
background-repeat: no-repeat;
|
| 55 |
+
z-index: 9999;
|
| 56 |
+
box-shadow: 5px 5px 10px #000;
|
| 57 |
+
pointer-events: none;
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
</style>
|
| 65 |
+
</head>
|
| 66 |
+
<body>
|
| 67 |
+
<div class="reveal">
|
| 68 |
+
<div class="slides">
|
| 69 |
+
<section>
|
| 70 |
+
<img src="assets/screenpage2.png" alt="Full slide image"
|
| 71 |
+
style="
|
| 72 |
+
width:120%;
|
| 73 |
+
height:110%;
|
| 74 |
+
object-fit:cover;
|
| 75 |
+
margin-left:-2.5%;
|
| 76 |
+
margin-top:-2.5%;
|
| 77 |
+
" /> <!-- 1 · Opening -->
|
| 78 |
+
</section>
|
| 79 |
+
<section data-auto-animate>
|
| 80 |
+
<img src="assets/head_logo.svg"
|
| 81 |
+
alt="Logo"
|
| 82 |
+
style="width: 120px; margin-bottom: 1rem;"
|
| 83 |
+
class="animate__animated animate__fadeInDown" />
|
| 84 |
+
<h1 class="animate__animated animate__fadeInDown">PyTorch × Transformers Journey</h1>
|
| 85 |
+
<h3 class="animate__animated animate__fadeInDown animate__delay-1s">Pythonicity, Autodiff & Modularity in Modern AI</h3>
|
| 86 |
+
<p class="animate__animated animate__fadeInUp animate__delay-2s">Pablo Montalvo‑Leroux · ML Engineer @ Hugging Face</p>
|
| 87 |
+
</section>
|
| 88 |
+
|
| 89 |
+
<section>
|
| 90 |
+
<h2>2016‑2018: Backprop & Birth Pangs</h2>
|
| 91 |
+
<p>The journey began with uncertainty: back in 2016, machine learning was far from standardized. Tools like Theano and CNTK were fading, and many of us—myself included—were jumping framework to framework. It was a time of raw experimentation.</p>
|
| 92 |
+
<ul>
|
| 93 |
+
<li>Frameworks were in flux; few stuck around.</li>
|
| 94 |
+
<li>MLPs evolved to RNNs and LSTMs.</li>
|
| 95 |
+
<li><strong>2017, Attention, then 2018: BERT</strong> arrives, blowing the roof off what's possible.</li>
|
| 96 |
+
</ul>
|
| 97 |
+
<p class="fragment">But reproducing results remained frustratingly difficult.</p>
|
| 98 |
+
</section>
|
| 99 |
+
|
| 100 |
+
<section>
|
| 101 |
+
<h2>Transformers × PyTorch: Reproducibility</h2>
|
| 102 |
+
<p>That all changed with <code>pytorch-pretrained-bert</code>, the predecessor to Transformers. Suddenly, the magic of BERT was available in an interface that made sense.</p>
|
| 103 |
+
<ul>
|
| 104 |
+
<li>No static graphs, just Python functions and PyTorch modules.</li>
|
| 105 |
+
<li>Readable, hackable code meant results could be shared, reproduced, improved.</li>
|
| 106 |
+
<li>This shifted the research community towards PyTorch.</li>
|
| 107 |
+
</ul>
|
| 108 |
+
</section>
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
<!-- 3 · Static vs Dynamic Graphs -->
|
| 112 |
+
<section>
|
| 113 |
+
<h2>Static vs Dynamic Graphs</h2>
|
| 114 |
+
<p>Static graphs require you to compile, wait, and cross fingers the bug reproduces.</p>
|
| 115 |
+
<p>Dynamic graphs mean you can drop <code>pdb.set_trace()</code> anywhere and continue iterating.</p>
|
| 116 |
+
<p>Nowadays <code>torch.compile</code> gives the best of both worlds: write dynamically, ship something ahead‑of‑time optimised.</p>
|
| 117 |
+
</section>
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
<!-- 4 · Dynamic Graphs Enabled Contribution -->
|
| 121 |
+
<section>
|
| 122 |
+
<h2>Dynamic Graphs Enabled Contribution</h2>
|
| 123 |
+
<ul>
|
| 124 |
+
<li>Developers debug at line‑rate — no cold‑start recompiles.</li>
|
| 125 |
+
<li>Pull‑requests remained reproducible overnight, which accelerated trust.</li>
|
| 126 |
+
<li>Static‑graph alternatives stalled and the community consolidated around PyTorch.</li>
|
| 127 |
+
</ul>
|
| 128 |
+
</section>
|
| 129 |
+
|
| 130 |
+
<section>
|
| 131 |
+
<h2>Clone the Paper Tonight → Tweak Tomorrow</h2>
|
| 132 |
+
<p>PyTorch lowered the barrier to implementation. Transformers removed the rest.</p>
|
| 133 |
+
<ul>
|
| 134 |
+
<li>2018: debugging BERT fine-tunes meant live tensor prints, not codegen restarts.</li>
|
| 135 |
+
<li>Community credibility grew because patches could be merged fast and verified easily.</li>
|
| 136 |
+
<li>Experimentation became a matter of hours, not weeks.</li>
|
| 137 |
+
</ul>
|
| 138 |
+
</section>
|
| 139 |
+
|
| 140 |
+
<!-- 6 · One Model · One File -->
|
| 141 |
+
<section>
|
| 142 |
+
<h2>“One Model · One File” — Why it Matters</h2>
|
| 143 |
+
<pre><code class="language-python" data-trim data-noescape>
|
| 144 |
+
# modeling_bert.py — single source of truth
|
| 145 |
+
class BertConfig(PretrainedConfig):
|
| 146 |
+
...
|
| 147 |
+
|
| 148 |
+
class BertSelfAttention(nn.Module):
|
| 149 |
+
...
|
| 150 |
+
|
| 151 |
+
class BertLayer(nn.Module):
|
| 152 |
+
...
|
| 153 |
+
|
| 154 |
+
class BertModel(PreTrainedModel):
|
| 155 |
+
def __init__(self, config):
|
| 156 |
+
super().__init__(config)
|
| 157 |
+
self.embeddings = BertEmbeddings(config)
|
| 158 |
+
self.encoder = nn.ModuleList(
|
| 159 |
+
[BertLayer(config) for _ in range(config.num_hidden_layers)]
|
| 160 |
+
)
|
| 161 |
+
self.init_weights()
|
| 162 |
+
</code></pre>
|
| 163 |
+
<ul>
|
| 164 |
+
<li>All layers, forward pass, and <code>from_pretrained()</code> logic live together.</li>
|
| 165 |
+
<li>No cross‑file inheritance maze — copy to Colab, hack, and run.</li>
|
| 166 |
+
<li>Reviewers diff one file; merge time dropped from days to hours.</li>
|
| 167 |
+
</ul>
|
| 168 |
+
</section>
|
| 169 |
+
|
| 170 |
+
<section>
|
| 171 |
+
<h2>Beyond Transformers: Ecosystem Reuse</h2>
|
| 172 |
+
<p>Other libraries depend on <code>transformers</code> as a model definition source. For example, <strong>TRL</strong> uses models from the Hub directly:</p>
|
| 173 |
+
|
| 174 |
+
<pre><code class="language-python" data-trim data-noescape>
|
| 175 |
+
from datasets import load_dataset
|
| 176 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 177 |
+
from trl import DPOConfig, DPOTrainer
|
| 178 |
+
|
| 179 |
+
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
| 180 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
| 181 |
+
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
|
| 182 |
+
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
|
| 183 |
+
trainer = DPOTrainer(
|
| 184 |
+
model=model,
|
| 185 |
+
args=training_args,
|
| 186 |
+
train_dataset=dataset,
|
| 187 |
+
processing_class=tokenizer
|
| 188 |
+
)
|
| 189 |
+
trainer.train()
|
| 190 |
+
</code></pre>
|
| 191 |
+
|
| 192 |
+
<p class="fragment">No hacks, no refactoring — just <code>from_pretrained()</code>. Thanks to PyTorch autodiff and robust model definitions.</p>
|
| 193 |
+
</section>
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
<!-- 8 · Paradigms come at a cost -->
|
| 197 |
+
<section>
|
| 198 |
+
<h2>Paradigms come at a cost</h2>
|
| 199 |
+
<ul>
|
| 200 |
+
<p>The library took off, scientific and engineering ML community benefitted from it</p>
|
| 201 |
+
<p>Torch adoption grew at the same time!</p>
|
| 202 |
+
<p>The Hugging Face Hub became the AI app reference,</p>
|
| 203 |
+
<p>In transformers, <strong> Maintenance</strong> becomes an issue: we have a lot of repeated code on purpose!</p>
|
| 204 |
+
<p class="fragment">...but python is never far :) </p>
|
| 205 |
+
|
| 206 |
+
</ul>
|
| 207 |
+
</section>
|
| 208 |
+
|
| 209 |
+
<!-- 8 · Back to Python: Mary Shelley Mode -->
|
| 210 |
+
<section>
|
| 211 |
+
<h2>Back to Python: Modular “Mary Shelley” Mode</h2>
|
| 212 |
+
<p>Compose new blocks via subclass & override.</p>
|
| 213 |
+
<pre><code class="language-python" data-trim>
|
| 214 |
+
class GlmMLP(Phi3MLP):
|
| 215 |
+
pass
|
| 216 |
+
|
| 217 |
+
class GlmAttention(LlamaAttention):
|
| 218 |
+
def __init__(self, config, layer_idx=None):
|
| 219 |
+
super().__init__(config, layer_idx)
|
| 220 |
+
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim,
|
| 221 |
+
config.hidden_size, bias=False)
|
| 222 |
+
|
| 223 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 224 |
+
# Slightly different RoPE
|
| 225 |
+
…
|
| 226 |
+
|
| 227 |
+
class GlmForCausalLM(LlamaForCausalLM):
|
| 228 |
+
pass
|
| 229 |
+
</code></pre>
|
| 230 |
+
<p>AST expands → full modeling file, still hackable.</p>
|
| 231 |
+
</section>
|
| 232 |
+
|
| 233 |
+
<section>
|
| 234 |
+
<h2>Back to Python: It's alive!</h2>
|
| 235 |
+
<p>All the code becomes runnable and a self-contained model definition</p>
|
| 236 |
+
<pre><code class="language-python" data-trim>
|
| 237 |
+
|
| 238 |
+
class GlmMLP(nn.Module):
|
| 239 |
+
def __init__(self, config):
|
| 240 |
+
super().__init__()
|
| 241 |
+
|
| 242 |
+
self.config = config
|
| 243 |
+
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
|
| 244 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
| 245 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 246 |
+
|
| 247 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
| 248 |
+
up_states = self.gate_up_proj(hidden_states)
|
| 249 |
+
|
| 250 |
+
gate, up_states = up_states.chunk(2, dim=-1)
|
| 251 |
+
up_states = up_states * self.activation_fn(gate)
|
| 252 |
+
|
| 253 |
+
return self.down_proj(up_states)
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 257 |
+
"""
|
| 258 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 259 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 260 |
+
"""
|
| 261 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 262 |
+
if n_rep == 1:
|
| 263 |
+
return hidden_states
|
| 264 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 265 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def eager_attention_forward(
|
| 269 |
+
module: nn.Module,
|
| 270 |
+
query: torch.Tensor,
|
| 271 |
+
key: torch.Tensor,
|
| 272 |
+
value: torch.Tensor,
|
| 273 |
+
attention_mask: Optional[torch.Tensor],
|
| 274 |
+
scaling: float,
|
| 275 |
+
dropout: float = 0.0,
|
| 276 |
+
**kwargs,
|
| 277 |
+
):
|
| 278 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 279 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 280 |
+
|
| 281 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 282 |
+
if attention_mask is not None:
|
| 283 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 284 |
+
attn_weights = attn_weights + causal_mask
|
| 285 |
+
|
| 286 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 287 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 288 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 289 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 290 |
+
|
| 291 |
+
return attn_output, attn_weights
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
def rotate_half(x):
|
| 295 |
+
"""Rotates half the hidden dims of the input."""
|
| 296 |
+
x1 = x[..., 0::2]
|
| 297 |
+
x2 = x[..., 1::2]
|
| 298 |
+
return torch.stack((-x2, x1), dim=-1).flatten(-2)
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 302 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 303 |
+
|
| 304 |
+
Args:
|
| 305 |
+
q (`torch.Tensor`): The query tensor.
|
| 306 |
+
k (`torch.Tensor`): The key tensor.
|
| 307 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 308 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 309 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 310 |
+
Deprecated and unused.
|
| 311 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 312 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 313 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 314 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 315 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 316 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 317 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 318 |
+
Returns:
|
| 319 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 320 |
+
"""
|
| 321 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 322 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 323 |
+
|
| 324 |
+
# Interleave them instead of usual shape
|
| 325 |
+
cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1)
|
| 326 |
+
sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1)
|
| 327 |
+
|
| 328 |
+
# Keep half or full tensor for later concatenation
|
| 329 |
+
rotary_dim = cos.shape[-1]
|
| 330 |
+
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
|
| 331 |
+
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
|
| 332 |
+
|
| 333 |
+
# Apply rotary embeddings on the first half or full tensor
|
| 334 |
+
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
|
| 335 |
+
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
|
| 336 |
+
|
| 337 |
+
# Concatenate back to full shape
|
| 338 |
+
q_embed = torch.cat([q_embed, q_pass], dim=-1)
|
| 339 |
+
k_embed = torch.cat([k_embed, k_pass], dim=-1)
|
| 340 |
+
return q_embed, k_embed
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
class GlmAttention(nn.Module):
|
| 344 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 345 |
+
|
| 346 |
+
def __init__(self, config: GlmConfig, layer_idx: Optional[int] = None):
|
| 347 |
+
super().__init__()
|
| 348 |
+
self.config = config
|
| 349 |
+
self.layer_idx = layer_idx
|
| 350 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
| 351 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 352 |
+
self.scaling = self.head_dim**-0.5
|
| 353 |
+
self.attention_dropout = config.attention_dropout
|
| 354 |
+
self.is_causal = True
|
| 355 |
+
|
| 356 |
+
self.q_proj = nn.Linear(
|
| 357 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
| 358 |
+
)
|
| 359 |
+
self.k_proj = nn.Linear(
|
| 360 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 361 |
+
)
|
| 362 |
+
self.v_proj = nn.Linear(
|
| 363 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 364 |
+
)
|
| 365 |
+
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
|
| 366 |
+
|
| 367 |
+
def forward(
|
| 368 |
+
self,
|
| 369 |
+
hidden_states: torch.Tensor,
|
| 370 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 371 |
+
attention_mask: Optional[torch.Tensor],
|
| 372 |
+
past_key_value: Optional[Cache] = None,
|
| 373 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 374 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 375 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 376 |
+
input_shape = hidden_states.shape[:-1]
|
| 377 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 378 |
+
|
| 379 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 380 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 381 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 382 |
+
|
| 383 |
+
cos, sin = position_embeddings
|
| 384 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 385 |
+
|
| 386 |
+
if past_key_value is not None:
|
| 387 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 388 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 389 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 390 |
+
|
| 391 |
+
attention_interface: Callable = eager_attention_forward
|
| 392 |
+
|
| 393 |
+
if self.config._attn_implementation != "eager":
|
| 394 |
+
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
| 395 |
+
logger.warning_once(
|
| 396 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
| 397 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 398 |
+
)
|
| 399 |
+
else:
|
| 400 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 401 |
+
|
| 402 |
+
attn_output, attn_weights = attention_interface(
|
| 403 |
+
self,
|
| 404 |
+
query_states,
|
| 405 |
+
key_states,
|
| 406 |
+
value_states,
|
| 407 |
+
attention_mask,
|
| 408 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 409 |
+
scaling=self.scaling,
|
| 410 |
+
**kwargs,
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
| 414 |
+
attn_output = self.o_proj(attn_output)
|
| 415 |
+
return attn_output, attn_weights
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
| 419 |
+
class GlmRMSNorm(nn.Module):
|
| 420 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 421 |
+
"""
|
| 422 |
+
GlmRMSNorm is equivalent to T5LayerNorm
|
| 423 |
+
"""
|
| 424 |
+
super().__init__()
|
| 425 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 426 |
+
self.variance_epsilon = eps
|
| 427 |
+
|
| 428 |
+
def forward(self, hidden_states):
|
| 429 |
+
input_dtype = hidden_states.dtype
|
| 430 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 431 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 432 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 433 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 434 |
+
|
| 435 |
+
def extra_repr(self):
|
| 436 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
class GlmRotaryEmbedding(nn.Module):
|
| 440 |
+
def __init__(self, config: GlmConfig, device=None):
|
| 441 |
+
super().__init__()
|
| 442 |
+
# BC: "rope_type" was originally "type"
|
| 443 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
| 444 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 445 |
+
else:
|
| 446 |
+
self.rope_type = "default"
|
| 447 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 448 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 449 |
+
|
| 450 |
+
self.config = config
|
| 451 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 452 |
+
|
| 453 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 454 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 455 |
+
self.original_inv_freq = self.inv_freq
|
| 456 |
+
</code></pre>
|
| 457 |
+
<p> We keep hackability while reconnecting with Python working paradigms.</p>
|
| 458 |
+
</section>
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
<!-- 9 · Logit Debugger -->
|
| 462 |
+
<section>
|
| 463 |
+
<h2>Logit Debugger: Trust but Verify</h2>
|
| 464 |
+
<ul>
|
| 465 |
+
<li>Hook every <code>nn.Module</code>; dump logits layer‑by‑layer</li>
|
| 466 |
+
<li>Spot ε‑level drifts (LayerNorm, FP16 underflow…)</li>
|
| 467 |
+
<li>JSON traces diffable in CI</li>
|
| 468 |
+
<img data-src="assets/visual_debugger.png" alt="Visual debugger" />
|
| 469 |
+
|
| 470 |
+
</ul>
|
| 471 |
+
</section>
|
| 472 |
+
|
| 473 |
+
<!-- 10 · DTensor & TP API -->
|
| 474 |
+
<section>
|
| 475 |
+
<h2>DTensor & Tensor‑Parallel API</h2>
|
| 476 |
+
<p>Before, changing to Tensor Parallel meant changing the code.</p>
|
| 477 |
+
|
| 478 |
+
<pre><code class="language-python" data-trim data-noescape>
|
| 479 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 480 |
+
from megatron.model import ColumnParallelLinear, RowParallelLinear
|
| 481 |
+
|
| 482 |
+
class MyTPModel(PreTrainedModel):
|
| 483 |
+
def __init__(self, config):
|
| 484 |
+
super().__init__(config)
|
| 485 |
+
self.q_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size)
|
| 486 |
+
self.k_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size)
|
| 487 |
+
self.v_proj = ColumnParallelLinear(config.hidden_size, config.hidden_size)
|
| 488 |
+
self.o_proj = RowParallelLinear(config.hidden_size, config.hidden_size)
|
| 489 |
+
|
| 490 |
+
</code></pre>
|
| 491 |
+
</section>
|
| 492 |
+
|
| 493 |
+
<!-- 11 · Zero‑Config Parallelism -->
|
| 494 |
+
<section>
|
| 495 |
+
<h2>Zero‑Config Tensor Parallelism</h2>
|
| 496 |
+
<p>The <code>tp_plan</code> JSON keeps model code pristine and declarative.</p>
|
| 497 |
+
<pre><code class="language-json" data-trim data-noescape>{
|
| 498 |
+
"layer.*.self_attn.q_proj": "colwise",
|
| 499 |
+
"layer.*.self_attn.k_proj": "colwise",
|
| 500 |
+
"layer.*.self_attn.v_proj": "colwise",
|
| 501 |
+
"layer.*.self_attn.o_proj": "rowwise"
|
| 502 |
+
}</code></pre>
|
| 503 |
+
<p class="fragment">Translated to</p>
|
| 504 |
+
|
| 505 |
+
<pre><code class="language-python" data-trim data-noescape>
|
| 506 |
+
def translate_to_torch_parallel_style(style: str):
|
| 507 |
+
if style == "colwise":
|
| 508 |
+
return ColwiseParallel()
|
| 509 |
+
elif style == "rowwise":
|
| 510 |
+
return RowwiseParallel()
|
| 511 |
+
# …
|
| 512 |
+
</code></pre>
|
| 513 |
+
<p class="fragment">One JSON → 100 B param model on 8 GPUs. Change the plan, not the code.</p>
|
| 514 |
+
</section>
|
| 515 |
+
|
| 516 |
+
<!-- 12 · Cache Allocator -->
|
| 517 |
+
<section>
|
| 518 |
+
<h2>Improvements, Load faster & stronger: Cache Allocator</h2>
|
| 519 |
+
<p>0‑copy weight sharding, single cuda Malloc</p>
|
| 520 |
+
<p>Faster model loads, even for a 50-shards 100B model (when we were sprinting Llama4!)</p>
|
| 521 |
+
<img data-src="assets/fastload.png" alt="SurprisedLewis" />
|
| 522 |
+
</section>
|
| 523 |
+
|
| 524 |
+
<!-- 15 · Why Python wins -->
|
| 525 |
+
<section>
|
| 526 |
+
<h2>Why Python Wins</h2>
|
| 527 |
+
<ul>
|
| 528 |
+
<li>Low entry barrier (although hard to master)</li>
|
| 529 |
+
<li>High‑level semantics express low‑level intent</li>
|
| 530 |
+
<li>Seamless C++/Rust extension points</li>
|
| 531 |
+
</ul>
|
| 532 |
+
</section>
|
| 533 |
+
|
| 534 |
+
<!-- 16 · Where Python can bite -->
|
| 535 |
+
<section>
|
| 536 |
+
<h2>Where Python can bite 🐍</h2>
|
| 537 |
+
<ul>
|
| 538 |
+
<li>Interpreter overhead on microkernels (token‑by‑token decode)</li>
|
| 539 |
+
<li>GIL can throttle async host‑side work</li>
|
| 540 |
+
<li>Easy to under‑optimise code fresh out of the lab</li>
|
| 541 |
+
</ul>
|
| 542 |
+
<p class="fragment">All of these can be mitigated: Triton, compiled custom ops, compile‑time fallback, <strong>custom kernels</strong></p>
|
| 543 |
+
</section>
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
<!-- 17 · Kernel Hub -->
|
| 547 |
+
<section>
|
| 548 |
+
<h2>Kernel Hub: Optimised Ops from the Community</h2>
|
| 549 |
+
<p>Kernel Hub lets any Python program <em>download and hot‑load</em> compiled CUDA/C++ kernels directly from the Hugging Face Hub at runtime.</p>
|
| 550 |
+
<ul>
|
| 551 |
+
<li><strong>Portable</strong> – kernels work from arbitrary paths outside <code>PYTHONPATH</code>.</li>
|
| 552 |
+
<li><strong>Unique</strong> – load multiple versions of the same op side‑by‑side in one process.</li>
|
| 553 |
+
<li><strong>Compatible</strong> – every kernel targets all recent PyTorch wheels (CUDA, ROCm, CPU) and C‑library ABIs.</li>
|
| 554 |
+
</ul>
|
| 555 |
+
<pre><code class="language-python" data-trim data-noescape>
|
| 556 |
+
import torch
|
| 557 |
+
from kernels import get_kernel
|
| 558 |
+
|
| 559 |
+
# Download optimised kernels from the Hugging Face Hub
|
| 560 |
+
activation = get_kernel("kernels-community/activation")
|
| 561 |
+
|
| 562 |
+
x = torch.randn(10, 10, dtype=torch.float16, device="cuda")
|
| 563 |
+
y = torch.empty_like(x)
|
| 564 |
+
activation.gelu_fast(y, x)
|
| 565 |
+
print(y)
|
| 566 |
+
</code></pre>
|
| 567 |
+
<p class="fragment">Same Transformer code — now with a <strong>3× faster</strong> GELU on A100s.</p>
|
| 568 |
+
</section>
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
<!-- 18 · API design lessons -->
|
| 572 |
+
<section>
|
| 573 |
+
<h2>API Design Lessons</h2>
|
| 574 |
+
<ul>
|
| 575 |
+
<li>Make easy things obvious, hard things possible</li>
|
| 576 |
+
<li>Paper‑to‑repo diff should be minimal</li>
|
| 577 |
+
<li>Research repo-to-stable architecture should be as fast as possible</li>
|
| 578 |
+
|
| 579 |
+
<li>Hide sharding, expose intent</li>
|
| 580 |
+
</ul>
|
| 581 |
+
<p>We tune radios without building RF amplifiers — ML should feel the same.</p>
|
| 582 |
+
<p class="fragment">..while enabling people who build the amplifiers.</p>
|
| 583 |
+
|
| 584 |
+
</section>
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
<!-- 14 · Rise of Multimodality -->
|
| 588 |
+
<section>
|
| 589 |
+
<h2>Rise of Multimodality</h2>
|
| 590 |
+
<pre><code class="language-python" data-trim data-noescape>
|
| 591 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen3-8B")
|
| 592 |
+
model = AutoModelForConditionalGeneration.from_pretrained("Qwen/Qwen3-8B")
|
| 593 |
+
</code></pre>
|
| 594 |
+
<p>Same API across text · vision · audio</p>
|
| 595 |
+
<p>More and more models, with specific processing - need to uniformize</p>
|
| 596 |
+
|
| 597 |
+
</section>
|
| 598 |
+
|
| 599 |
+
<section>
|
| 600 |
+
<h2>Rise of Multimodality: torch-powered processing</h2>
|
| 601 |
+
<p>Torch and torchvision ops have replaced np + PIL defaults in transformers</p>
|
| 602 |
+
|
| 603 |
+
<img data-src="assets/normalize_time_torch.webp" width="80%" height="600" alt="Fast load" />
|
| 604 |
+
|
| 605 |
+
</section>
|
| 606 |
+
<!-- 19 · Model Growth by Modality -->
|
| 607 |
+
<section>
|
| 608 |
+
<h2>Model Growth by Modality</h2>
|
| 609 |
+
<iframe src="assets/model_growth.html" width="80%" height="600" style="border:none;"></iframe>
|
| 610 |
+
</section>
|
| 611 |
+
|
| 612 |
+
<!-- 20 · Takeaways -->
|
| 613 |
+
<section>
|
| 614 |
+
<h2>Takeaways & The Future</h2>
|
| 615 |
+
<ul>
|
| 616 |
+
<li style="display: flex; align-items: center; gap: 1rem;">
|
| 617 |
+
<img src="assets/torchlogo.png" alt="PyTorch" style="height: 2rem;" />
|
| 618 |
+
PyTorch & <code>transformers</code> grow symbiotically
|
| 619 |
+
<img src="assets/head_logo.svg" alt="Transformers" style="height: 2rem;" />
|
| 620 |
+
</li>
|
| 621 |
+
<li>Pythonicity × pragmatism drive adoption</li>
|
| 622 |
+
<li>Open‑source models are shipping faster & bigger than ever</li>
|
| 623 |
+
<li class="fragment"> Let's go!</li>
|
| 624 |
+
|
| 625 |
+
</ul>
|
| 626 |
+
<p>
|
| 627 |
+
<a href="https://huggingface.co/transformers/contribute" target="_blank">
|
| 628 |
+
hf.co/transformers/contribute
|
| 629 |
+
</a>
|
| 630 |
+
</p>
|
| 631 |
+
</section>
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
</div>
|
| 635 |
+
</div>
|
| 636 |
+
|
| 637 |
+
<!-- Reveal.js core -->
|
| 638 |
+
<script src="https://cdn.jsdelivr.net/npm/reveal.js@5/dist/reveal.js"></script>
|
| 639 |
+
<script src="https://cdn.jsdelivr.net/npm/reveal.js@5/plugin/highlight/highlight.js"></script>
|
| 640 |
+
<script src="https://cdn.jsdelivr.net/npm/reveal.js@5/plugin/notes/notes.js"></script>
|
| 641 |
+
<!-- Plotly for interactive charts -->
|
| 642 |
+
<script src="https://cdn.plot.ly/plotly-2.31.1.min.js"></script>
|
| 643 |
+
<script>
|
| 644 |
+
Reveal.initialize({
|
| 645 |
+
hash: true,
|
| 646 |
+
slideNumber: true,
|
| 647 |
+
transition: 'slide',
|
| 648 |
+
backgroundTransition: 'convex',
|
| 649 |
+
plugins: [ RevealHighlight, RevealNotes ]
|
| 650 |
+
});
|
| 651 |
+
</script>
|
| 652 |
+
</body>
|
| 653 |
</html>
|