Spaces:
Running
Running
Update index.html
Browse files- index.html +4 -95
index.html
CHANGED
|
@@ -303,10 +303,6 @@ class GlmAttention(LlamaAttention):
|
|
| 303 |
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim,
|
| 304 |
config.hidden_size, bias=False)
|
| 305 |
|
| 306 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 307 |
-
# Slightly different RoPE
|
| 308 |
-
…
|
| 309 |
-
|
| 310 |
class GlmForCausalLM(LlamaForCausalLM):
|
| 311 |
pass
|
| 312 |
</code></pre>
|
|
@@ -318,7 +314,7 @@ class GlmForCausalLM(LlamaForCausalLM):
|
|
| 318 |
<p>All the code becomes runnable and a self-contained model definition</p>
|
| 319 |
<pre><code class="language-python" data-trim>
|
| 320 |
|
| 321 |
-
|
| 322 |
def __init__(self, config):
|
| 323 |
super().__init__()
|
| 324 |
|
|
@@ -336,93 +332,6 @@ class GlmForCausalLM(LlamaForCausalLM):
|
|
| 336 |
return self.down_proj(up_states)
|
| 337 |
|
| 338 |
|
| 339 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 340 |
-
"""
|
| 341 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 342 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 343 |
-
"""
|
| 344 |
-
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 345 |
-
if n_rep == 1:
|
| 346 |
-
return hidden_states
|
| 347 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 348 |
-
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
def eager_attention_forward(
|
| 352 |
-
module: nn.Module,
|
| 353 |
-
query: torch.Tensor,
|
| 354 |
-
key: torch.Tensor,
|
| 355 |
-
value: torch.Tensor,
|
| 356 |
-
attention_mask: Optional[torch.Tensor],
|
| 357 |
-
scaling: float,
|
| 358 |
-
dropout: float = 0.0,
|
| 359 |
-
**kwargs,
|
| 360 |
-
):
|
| 361 |
-
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 362 |
-
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 363 |
-
|
| 364 |
-
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 365 |
-
if attention_mask is not None:
|
| 366 |
-
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 367 |
-
attn_weights = attn_weights + causal_mask
|
| 368 |
-
|
| 369 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 370 |
-
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 371 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
| 372 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 373 |
-
|
| 374 |
-
return attn_output, attn_weights
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
def rotate_half(x):
|
| 378 |
-
"""Rotates half the hidden dims of the input."""
|
| 379 |
-
x1 = x[..., 0::2]
|
| 380 |
-
x2 = x[..., 1::2]
|
| 381 |
-
return torch.stack((-x2, x1), dim=-1).flatten(-2)
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 385 |
-
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 386 |
-
|
| 387 |
-
Args:
|
| 388 |
-
q (`torch.Tensor`): The query tensor.
|
| 389 |
-
k (`torch.Tensor`): The key tensor.
|
| 390 |
-
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 391 |
-
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 392 |
-
position_ids (`torch.Tensor`, *optional*):
|
| 393 |
-
Deprecated and unused.
|
| 394 |
-
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 395 |
-
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 396 |
-
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 397 |
-
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 398 |
-
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 399 |
-
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 400 |
-
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 401 |
-
Returns:
|
| 402 |
-
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 403 |
-
"""
|
| 404 |
-
cos = cos.unsqueeze(unsqueeze_dim)
|
| 405 |
-
sin = sin.unsqueeze(unsqueeze_dim)
|
| 406 |
-
|
| 407 |
-
# Interleave them instead of usual shape
|
| 408 |
-
cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1)
|
| 409 |
-
sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1)
|
| 410 |
-
|
| 411 |
-
# Keep half or full tensor for later concatenation
|
| 412 |
-
rotary_dim = cos.shape[-1]
|
| 413 |
-
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
|
| 414 |
-
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
|
| 415 |
-
|
| 416 |
-
# Apply rotary embeddings on the first half or full tensor
|
| 417 |
-
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
|
| 418 |
-
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
|
| 419 |
-
|
| 420 |
-
# Concatenate back to full shape
|
| 421 |
-
q_embed = torch.cat([q_embed, q_pass], dim=-1)
|
| 422 |
-
k_embed = torch.cat([k_embed, k_pass], dim=-1)
|
| 423 |
-
return q_embed, k_embed
|
| 424 |
-
|
| 425 |
-
|
| 426 |
class GlmAttention(nn.Module):
|
| 427 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 428 |
|
|
@@ -647,7 +556,7 @@ y = torch.empty_like(x)
|
|
| 647 |
activation.gelu_fast(y, x)
|
| 648 |
print(y)
|
| 649 |
</code></pre>
|
| 650 |
-
<p
|
| 651 |
</section>
|
| 652 |
|
| 653 |
<section>
|
|
@@ -722,8 +631,8 @@ model = AutoModelForConditionalGeneration.from_pretrained("Qwen/Qwen3-8B")
|
|
| 722 |
🤝 Symbiotic Growth
|
| 723 |
</p>
|
| 724 |
<p style="display: flex; align-items: center; gap: 0.4rem; font-size: 1.4rem;">
|
| 725 |
-
<img src="assets/
|
| 726 |
-
PyTorch & <code>transformers</code> grow together
|
| 727 |
<img src="assets/head_logo.svg" alt="Transformers" style="height: 1.4rem;" />
|
| 728 |
</p>
|
| 729 |
</div>
|
|
|
|
| 303 |
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim,
|
| 304 |
config.hidden_size, bias=False)
|
| 305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
class GlmForCausalLM(LlamaForCausalLM):
|
| 307 |
pass
|
| 308 |
</code></pre>
|
|
|
|
| 314 |
<p>All the code becomes runnable and a self-contained model definition</p>
|
| 315 |
<pre><code class="language-python" data-trim>
|
| 316 |
|
| 317 |
+
class GlmMLP(nn.Module):
|
| 318 |
def __init__(self, config):
|
| 319 |
super().__init__()
|
| 320 |
|
|
|
|
| 332 |
return self.down_proj(up_states)
|
| 333 |
|
| 334 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
class GlmAttention(nn.Module):
|
| 336 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 337 |
|
|
|
|
| 556 |
activation.gelu_fast(y, x)
|
| 557 |
print(y)
|
| 558 |
</code></pre>
|
| 559 |
+
<p>Same Transformer code — now with a <strong>3× faster</strong> GELU on A100s.</p>
|
| 560 |
</section>
|
| 561 |
|
| 562 |
<section>
|
|
|
|
| 631 |
🤝 Symbiotic Growth
|
| 632 |
</p>
|
| 633 |
<p style="display: flex; align-items: center; gap: 0.4rem; font-size: 1.4rem;">
|
| 634 |
+
<img src="assets/transparent_PyTorch.png" alt="PyTorch" style="height: 1.4rem;" />
|
| 635 |
+
<code> PyTorch</code> & <code>transformers</code> grow together
|
| 636 |
<img src="assets/head_logo.svg" alt="Transformers" style="height: 1.4rem;" />
|
| 637 |
</p>
|
| 638 |
</div>
|