Delete main.py
Browse files
main.py
DELETED
|
@@ -1,84 +0,0 @@
|
|
| 1 |
-
import matplotlib
|
| 2 |
-
matplotlib.use('TkAgg') # Use TkAgg backend for better compatibility
|
| 3 |
-
import matplotlib.pyplot as plt
|
| 4 |
-
from matplotlib import pyplot as plt
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import torch
|
| 7 |
-
from transformers import GLPNForDepthEstimation, GLPNImageProcessor
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
feature_extractor = GLPNImageProcessor.from_pretrained("vinvino02/glpn-nyu")
|
| 11 |
-
model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-nyu")
|
| 12 |
-
|
| 13 |
-
image=Image.open(r"/Users/priyadharshinirameskumar/Desktop/venv/ROOM.jpg")
|
| 14 |
-
new_height=480 if image.height > 480 else image.height
|
| 15 |
-
new_height -=(new_height % 32)
|
| 16 |
-
new_width =int(new_height * image.width / image.height)
|
| 17 |
-
diff =new_width % 32
|
| 18 |
-
|
| 19 |
-
new_width=new_width - diff if diff <16 else new_width + (32 - diff)
|
| 20 |
-
new_size = (new_width,new_height)
|
| 21 |
-
image = image.resize(new_size)
|
| 22 |
-
|
| 23 |
-
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
with torch.no_grad():
|
| 27 |
-
outputs = model(**inputs)
|
| 28 |
-
predicted_depth = outputs.predicted_depth
|
| 29 |
-
|
| 30 |
-
pad = 16
|
| 31 |
-
output = predicted_depth.squeeze().cpu().numpy() * 1000.0
|
| 32 |
-
output = output[pad:-pad, pad:-pad]
|
| 33 |
-
image = image.crop((pad, pad, image.width - pad, image.height - pad))
|
| 34 |
-
|
| 35 |
-
fig,ax = plt.subplots(1,2)
|
| 36 |
-
ax[0].imshow(image)
|
| 37 |
-
ax[0].tick_params(left=False,bottom=False,labelleft=False,labelbottom=False)
|
| 38 |
-
ax[1].imshow(output,cmap='plasma')
|
| 39 |
-
ax[1].tick_params(left=False,bottom=False,labelleft=False,labelbottom=False)
|
| 40 |
-
plt.tight_layout()
|
| 41 |
-
plt.pause(5)
|
| 42 |
-
|
| 43 |
-
import numpy as np
|
| 44 |
-
import open3d as o3d
|
| 45 |
-
|
| 46 |
-
width, height = image.size
|
| 47 |
-
|
| 48 |
-
depth_image = (output *255 / np.max(output)).astype(np.uint8)
|
| 49 |
-
image = np.array(image)
|
| 50 |
-
|
| 51 |
-
depth_o3d = o3d.geometry.Image(depth_image)
|
| 52 |
-
image_0ed = o3d.geometry.Image(image)
|
| 53 |
-
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_0ed, depth_o3d, convert_rgb_to_intensity=False)
|
| 54 |
-
|
| 55 |
-
camera_intrinstic = o3d.camera.PinholeCameraIntrinsic()
|
| 56 |
-
camera_intrinstic.set_intrinsics(width, height, 500, 500, width / 2, height / 2)
|
| 57 |
-
|
| 58 |
-
pcd_raw = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinstic)
|
| 59 |
-
o3d.visualization.draw_geometries([pcd_raw])
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
cl,ind = pcd_raw.remove_statistical_outlier(nb_neighbors=20,std_ratio=20.0)
|
| 63 |
-
pcd=pcd_raw.select_by_index(ind)
|
| 64 |
-
|
| 65 |
-
pcd.estimate_normals()
|
| 66 |
-
pcd.orient_normals_to_align_with_direction()
|
| 67 |
-
|
| 68 |
-
o3d.visualization.draw_geometries([pcd])
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd,depth=10,n_threads=1)[0]
|
| 72 |
-
|
| 73 |
-
rotation = mesh.get_rotation_matrix_from_xyz((np.pi,0,0))
|
| 74 |
-
mesh.rotate(rotation,center=(0,0,0))
|
| 75 |
-
|
| 76 |
-
o3d.visualization.draw_geometrics([mesh], mesh_show_back_face=True)
|
| 77 |
-
|
| 78 |
-
# mesh_uniform = mesh.paint_uniform_color([0.9,0.8,0.9])
|
| 79 |
-
# mesh_uniform.compute_vertex_normals()
|
| 80 |
-
# o3d.visualization.draw_geometries([mesh_uniform], mesh_show_back_face=True)
|
| 81 |
-
|
| 82 |
-
o3d.io.write_triangle_mesh("mesh.ply",mesh)
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|