Create orpheus-tts/engine_class.py
Browse files- orpheus-tts/engine_class.py +146 -0
orpheus-tts/engine_class.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import asyncio
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
+
from vllm import AsyncLLMEngine, AsyncEngineArgs, SamplingParams
|
| 5 |
+
from transformers import AutoTokenizer
|
| 6 |
+
import threading
|
| 7 |
+
import queue
|
| 8 |
+
from .decoder import tokens_decoder_sync
|
| 9 |
+
|
| 10 |
+
class OrpheusModel:
|
| 11 |
+
def __init__(self, model_name, dtype=torch.bfloat16, tokenizer=None, **engine_kwargs):
|
| 12 |
+
self.model_name = self._map_model_params(model_name)
|
| 13 |
+
self.dtype = dtype
|
| 14 |
+
self.engine_kwargs = engine_kwargs # vLLM engine kwargs
|
| 15 |
+
self.engine = self._setup_engine()
|
| 16 |
+
# Available voices for German Kartoffel model
|
| 17 |
+
if "german" in model_name.lower() or "kartoffel" in model_name.lower():
|
| 18 |
+
self.available_voices = ["Jakob", "Anton", "Julian", "Sophie", "Marie", "Mia"]
|
| 19 |
+
else:
|
| 20 |
+
# Original English voices as fallback
|
| 21 |
+
self.available_voices = ["zoe", "zac", "jess", "leo", "mia", "julia", "leah", "tara"]
|
| 22 |
+
|
| 23 |
+
# Use provided tokenizer path or default to model_name
|
| 24 |
+
# For German models, try the model itself first, then fallback to original tokenizer
|
| 25 |
+
if tokenizer:
|
| 26 |
+
tokenizer_path = tokenizer
|
| 27 |
+
elif "german" in model_name.lower() or "kartoffel" in model_name.lower():
|
| 28 |
+
tokenizer_path = model_name # Try using the same model as tokenizer
|
| 29 |
+
else:
|
| 30 |
+
tokenizer_path = 'canopylabs/orpheus-3b-0.1-pretrained' # Original fallback
|
| 31 |
+
|
| 32 |
+
self.tokenizer = self._load_tokenizer(tokenizer_path)
|
| 33 |
+
|
| 34 |
+
def _load_tokenizer(self, tokenizer_path):
|
| 35 |
+
"""Load tokenizer from local path or HuggingFace hub"""
|
| 36 |
+
try:
|
| 37 |
+
# Check if tokenizer_path is a local directory
|
| 38 |
+
if os.path.isdir(tokenizer_path):
|
| 39 |
+
return AutoTokenizer.from_pretrained(tokenizer_path, local_files_only=True)
|
| 40 |
+
else:
|
| 41 |
+
return AutoTokenizer.from_pretrained(tokenizer_path)
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"Error loading tokenizer: {e}")
|
| 44 |
+
print(f"Falling back to default tokenizer")
|
| 45 |
+
return AutoTokenizer.from_pretrained("gpt2")
|
| 46 |
+
|
| 47 |
+
def _map_model_params(self, model_name):
|
| 48 |
+
model_map = {
|
| 49 |
+
# "nano-150m":{
|
| 50 |
+
# "repo_id": "canopylabs/orpheus-tts-0.1-finetune-prod",
|
| 51 |
+
# },
|
| 52 |
+
# "micro-400m":{
|
| 53 |
+
# "repo_id": "canopylabs/orpheus-tts-0.1-finetune-prod",
|
| 54 |
+
# },
|
| 55 |
+
# "small-1b":{
|
| 56 |
+
# "repo_id": "canopylabs/orpheus-tts-0.1-finetune-prod",
|
| 57 |
+
# },
|
| 58 |
+
"medium-3b":{
|
| 59 |
+
"repo_id": "canopylabs/orpheus-tts-0.1-finetune-prod",
|
| 60 |
+
},
|
| 61 |
+
}
|
| 62 |
+
unsupported_models = ["nano-150m", "micro-400m", "small-1b"]
|
| 63 |
+
if (model_name in unsupported_models):
|
| 64 |
+
raise ValueError(f"Model {model_name} is not supported. Only medium-3b is supported, small, micro and nano models will be released very soon")
|
| 65 |
+
elif model_name in model_map:
|
| 66 |
+
return model_name[model_name]["repo_id"]
|
| 67 |
+
else:
|
| 68 |
+
return model_name
|
| 69 |
+
|
| 70 |
+
def _setup_engine(self):
|
| 71 |
+
engine_args = AsyncEngineArgs(
|
| 72 |
+
model=self.model_name,
|
| 73 |
+
dtype=self.dtype,
|
| 74 |
+
**self.engine_kwargs
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
return AsyncLLMEngine.from_engine_args(engine_args)
|
| 78 |
+
|
| 79 |
+
def validate_voice(self, voice):
|
| 80 |
+
if voice:
|
| 81 |
+
if voice not in self.engine.available_voices:
|
| 82 |
+
raise ValueError(f"Voice {voice} is not available for model {self.model_name}")
|
| 83 |
+
|
| 84 |
+
def _format_prompt(self, prompt, voice="tara", model_type="larger"):
|
| 85 |
+
if model_type == "smaller":
|
| 86 |
+
if voice:
|
| 87 |
+
return f"<custom_token_3>{prompt}[{voice}]<custom_token_4><custom_token_5>"
|
| 88 |
+
else:
|
| 89 |
+
return f"<custom_token_3>{prompt}<custom_token_4><custom_token_5>"
|
| 90 |
+
else:
|
| 91 |
+
if voice:
|
| 92 |
+
adapted_prompt = f"{voice}: {prompt}"
|
| 93 |
+
prompt_tokens = self.tokenizer(adapted_prompt, return_tensors="pt")
|
| 94 |
+
start_token = torch.tensor([[ 128259]], dtype=torch.int64)
|
| 95 |
+
end_tokens = torch.tensor([[128009, 128260, 128261, 128257]], dtype=torch.int64)
|
| 96 |
+
all_input_ids = torch.cat([start_token, prompt_tokens.input_ids, end_tokens], dim=1)
|
| 97 |
+
prompt_string = self.tokenizer.decode(all_input_ids[0])
|
| 98 |
+
return prompt_string
|
| 99 |
+
else:
|
| 100 |
+
prompt_tokens = self.tokenizer(prompt, return_tensors="pt")
|
| 101 |
+
start_token = torch.tensor([[ 128259]], dtype=torch.int64)
|
| 102 |
+
end_tokens = torch.tensor([[128009, 128260, 128261, 128257]], dtype=torch.int64)
|
| 103 |
+
all_input_ids = torch.cat([start_token, prompt_tokens.input_ids, end_tokens], dim=1)
|
| 104 |
+
prompt_string = self.tokenizer.decode(all_input_ids[0])
|
| 105 |
+
return prompt_string
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def generate_tokens_sync(self, prompt, voice=None, request_id="req-001", temperature=0.6, top_p=0.8, max_tokens=1200, stop_token_ids = [49158], repetition_penalty=1.3):
|
| 111 |
+
prompt_string = self._format_prompt(prompt, voice)
|
| 112 |
+
print(prompt)
|
| 113 |
+
sampling_params = SamplingParams(
|
| 114 |
+
temperature=temperature,
|
| 115 |
+
top_p=top_p,
|
| 116 |
+
max_tokens=max_tokens, # Adjust max_tokens as needed.
|
| 117 |
+
stop_token_ids = stop_token_ids,
|
| 118 |
+
repetition_penalty=repetition_penalty,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
token_queue = queue.Queue()
|
| 122 |
+
|
| 123 |
+
async def async_producer():
|
| 124 |
+
async for result in self.engine.generate(prompt=prompt_string, sampling_params=sampling_params, request_id=request_id):
|
| 125 |
+
# Place each token text into the queue.
|
| 126 |
+
token_queue.put(result.outputs[0].text)
|
| 127 |
+
token_queue.put(None) # Sentinel to indicate completion.
|
| 128 |
+
|
| 129 |
+
def run_async():
|
| 130 |
+
asyncio.run(async_producer())
|
| 131 |
+
|
| 132 |
+
thread = threading.Thread(target=run_async)
|
| 133 |
+
thread.start()
|
| 134 |
+
|
| 135 |
+
while True:
|
| 136 |
+
token = token_queue.get()
|
| 137 |
+
if token is None:
|
| 138 |
+
break
|
| 139 |
+
yield token
|
| 140 |
+
|
| 141 |
+
thread.join()
|
| 142 |
+
|
| 143 |
+
def generate_speech(self, **kwargs):
|
| 144 |
+
return tokens_decoder_sync(self.generate_tokens_sync(**kwargs))
|
| 145 |
+
|
| 146 |
+
|