Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -25,11 +25,6 @@ current_vis = []
|
|
| 25 |
current_bpe = []
|
| 26 |
current_index = 0
|
| 27 |
|
| 28 |
-
# 设置初始状态
|
| 29 |
-
initial_state = {
|
| 30 |
-
"vis": [],
|
| 31 |
-
"bpe": []
|
| 32 |
-
}
|
| 33 |
|
| 34 |
def load_model(check_type):
|
| 35 |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
@@ -59,9 +54,70 @@ def load_model(check_type):
|
|
| 59 |
|
| 60 |
return model.to(device), tokenizer, transform, device
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
def process_image(model, tokenizer, transform, device, check_type, image, text):
|
| 63 |
global current_vis, current_bpe, current_index
|
| 64 |
src_size = image.size
|
|
|
|
|
|
|
|
|
|
| 65 |
if 'TokenOCR' in check_type:
|
| 66 |
images, target_ratio = dynamic_preprocess(image, min_num=1, max_num=12,
|
| 67 |
image_size=model.config.force_image_size,
|
|
@@ -72,50 +128,33 @@ def process_image(model, tokenizer, transform, device, check_type, image, text):
|
|
| 72 |
pixel_values = torch.stack([transform(image)]).to(device)
|
| 73 |
target_ratio = (1, 1)
|
| 74 |
|
| 75 |
-
# 文本处理
|
| 76 |
text += ' '
|
| 77 |
input_ids = tokenizer(text)['input_ids'][1:]
|
| 78 |
input_ids = torch.tensor(input_ids, device=device)
|
| 79 |
-
|
| 80 |
-
# 获取嵌入
|
| 81 |
with torch.no_grad():
|
| 82 |
if 'R50' in check_type:
|
| 83 |
text_embeds = model.language_embedding(input_ids)
|
| 84 |
else:
|
| 85 |
text_embeds = model.tok_embeddings(input_ids)
|
| 86 |
-
|
| 87 |
-
vit_embeds, size1 = model.forward_tokenocr(pixel_values
|
| 88 |
-
print("vit_embeds",vit_embeds)
|
| 89 |
-
print("vit_embeds,shape",vit_embeds.shape)
|
| 90 |
-
print("target_ratio",target_ratio)
|
| 91 |
-
print("check_type",check_type)
|
| 92 |
vit_embeds, size2 = post_process(vit_embeds, target_ratio, check_type)
|
| 93 |
-
|
| 94 |
-
# 计算相似度
|
| 95 |
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
|
| 96 |
vit_embeds = vit_embeds / vit_embeds.norm(dim=-1, keepdim=True)
|
| 97 |
similarity = text_embeds @ vit_embeds.T
|
| 98 |
resized_size = size1 if size1 is not None else size2
|
| 99 |
|
| 100 |
-
# print(f"text_embeds shape: {text_embeds.shape}, numel: {text_embeds.numel()}") # text_embeds shape: torch.Size([4, 2048]), numel: 8192
|
| 101 |
-
# print(f"vit_embeds shape: {vit_embeds.shape}, numel: {vit_embeds.numel()}") # vit_embeds shape: torch.Size([9728, 2048]), numel: 19922944
|
| 102 |
-
# print(f"similarity shape: {similarity.shape}, numel: {similarity.numel()}")# similarity shape: torch.Size([4, 9728]), numel: 38912
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
# 生成可视化
|
| 106 |
attn_map = similarity.reshape(len(text_embeds), resized_size[0], resized_size[1])
|
| 107 |
-
# attn_map = similarity.reshape(len(text_embeds), *target_ratio)
|
| 108 |
all_bpe_strings = [tokenizer.decode(input_id) for input_id in input_ids]
|
| 109 |
-
current_vis = generate_similiarity_map([image], attn_map,
|
| 110 |
[tokenizer.decode([i]) for i in input_ids],
|
| 111 |
[], target_ratio, src_size)
|
| 112 |
-
|
| 113 |
current_bpe = [tokenizer.decode([i]) for i in input_ids]
|
| 114 |
-
# current_bpe[-1] = 'Input text'
|
| 115 |
current_bpe[-1] = text
|
| 116 |
-
|
| 117 |
-
print("current_bpe",len(current_bpe))
|
| 118 |
-
return image, current_vis[0], current_bpe[0]
|
| 119 |
|
| 120 |
# 事件处理函数
|
| 121 |
def update_index(change):
|
|
@@ -127,24 +166,13 @@ def format_bpe_display(bpe):
|
|
| 127 |
# 使用HTML标签来设置字体大小、颜色,加粗,并居中
|
| 128 |
return f"<div style='text-align:center; font-size:20px;'><strong>Current BPE: <span style='color:red;'>{bpe}</span></strong></div>"
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
# else:
|
| 136 |
-
# return None, "索引超出范围"
|
| 137 |
-
# 状态更新函数,利用传递的状态(vis, bpe)
|
| 138 |
-
# 使用状态信息来处理滑动条改变
|
| 139 |
-
def update_slider_index(x, state):
|
| 140 |
-
vis = state['vis']
|
| 141 |
-
bpe = state['bpe']
|
| 142 |
-
if 0 <= x < len(vis):
|
| 143 |
-
return vis[x], format_bpe_display(bpe[x]), state
|
| 144 |
else:
|
| 145 |
-
return None, "索引超出范围"
|
| 146 |
-
|
| 147 |
-
|
| 148 |
|
| 149 |
|
| 150 |
|
|
@@ -202,37 +230,24 @@ with gr.Blocks(title="BPE Visualization Demo") as demo:
|
|
| 202 |
# return image, vis, bpe_text, slider_max_val
|
| 203 |
|
| 204 |
@spaces.GPU
|
| 205 |
-
def on_run_clicked(model_type, image, text
|
|
|
|
|
|
|
| 206 |
model, tokenizer, transform, device = load_model(model_type)
|
| 207 |
-
current_index = 0 # Reset index when new image is processed
|
| 208 |
image, vis, bpe = process_image(model, tokenizer, transform, device, model_type, image, text)
|
| 209 |
-
slider_max_val = len(
|
| 210 |
-
bpe_text = format_bpe_display(bpe
|
| 211 |
-
|
| 212 |
-
state['vis'] = vis
|
| 213 |
-
state['bpe'] = bpe
|
| 214 |
-
return image, vis[current_index], bpe_text, slider_max_val, state
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
|
| 219 |
|
| 220 |
-
# run_btn.click(
|
| 221 |
-
# on_run_clicked,
|
| 222 |
-
# inputs=[model_type, image_input, text_input],
|
| 223 |
-
# outputs=[orig_img, heatmap, bpe_display, index_slider],
|
| 224 |
-
# ).then(
|
| 225 |
-
# lambda max_val: (gr.update(visible=True), gr.update(visible=True, maximum=max_val, value=0), gr.update(visible=True), gr.update(visible=True)),
|
| 226 |
-
# inputs=index_slider,
|
| 227 |
-
# outputs=[prev_btn, index_slider, next_btn, bpe_display],
|
| 228 |
-
# )
|
| 229 |
-
# Gradio 按钮点击后的处理
|
| 230 |
-
# Gradio 按钮点击后的处理
|
| 231 |
run_btn.click(
|
| 232 |
on_run_clicked,
|
| 233 |
-
inputs=[model_type, image_input, text_input
|
| 234 |
-
outputs=[orig_img, heatmap, bpe_display, index_slider
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
| 236 |
)
|
| 237 |
|
| 238 |
prev_btn.click(
|
|
@@ -246,16 +261,12 @@ with gr.Blocks(title="BPE Visualization Demo") as demo:
|
|
| 246 |
)
|
| 247 |
|
| 248 |
|
| 249 |
-
# index_slider.change(
|
| 250 |
-
# update_slider_index,
|
| 251 |
-
# inputs=index_slider,
|
| 252 |
-
# outputs=[heatmap, bpe_display]
|
| 253 |
-
# )
|
| 254 |
index_slider.change(
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
|
|
|
| 259 |
|
| 260 |
|
| 261 |
if __name__ == "__main__":
|
|
|
|
| 25 |
current_bpe = []
|
| 26 |
current_index = 0
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def load_model(check_type):
|
| 30 |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 54 |
|
| 55 |
return model.to(device), tokenizer, transform, device
|
| 56 |
|
| 57 |
+
# def process_image(model, tokenizer, transform, device, check_type, image, text):
|
| 58 |
+
# global current_vis, current_bpe, current_index
|
| 59 |
+
# src_size = image.size
|
| 60 |
+
# if 'TokenOCR' in check_type:
|
| 61 |
+
# images, target_ratio = dynamic_preprocess(image, min_num=1, max_num=12,
|
| 62 |
+
# image_size=model.config.force_image_size,
|
| 63 |
+
# use_thumbnail=model.config.use_thumbnail,
|
| 64 |
+
# return_ratio=True)
|
| 65 |
+
# pixel_values = torch.stack([transform(img) for img in images]).to(device)
|
| 66 |
+
# else:
|
| 67 |
+
# pixel_values = torch.stack([transform(image)]).to(device)
|
| 68 |
+
# target_ratio = (1, 1)
|
| 69 |
+
|
| 70 |
+
# # 文本处理
|
| 71 |
+
# text += ' '
|
| 72 |
+
# input_ids = tokenizer(text)['input_ids'][1:]
|
| 73 |
+
# input_ids = torch.tensor(input_ids, device=device)
|
| 74 |
+
|
| 75 |
+
# # 获取嵌入
|
| 76 |
+
# with torch.no_grad():
|
| 77 |
+
# if 'R50' in check_type:
|
| 78 |
+
# text_embeds = model.language_embedding(input_ids)
|
| 79 |
+
# else:
|
| 80 |
+
# text_embeds = model.tok_embeddings(input_ids)
|
| 81 |
+
|
| 82 |
+
# vit_embeds, size1 = model.forward_tokenocr(pixel_values.to(torch.bfloat16).to(device))
|
| 83 |
+
# print("vit_embeds",vit_embeds)
|
| 84 |
+
# print("vit_embeds,shape",vit_embeds.shape)
|
| 85 |
+
# print("target_ratio",target_ratio)
|
| 86 |
+
# print("check_type",check_type)
|
| 87 |
+
# vit_embeds, size2 = post_process(vit_embeds, target_ratio, check_type)
|
| 88 |
+
|
| 89 |
+
# # 计算相似度
|
| 90 |
+
# text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
|
| 91 |
+
# vit_embeds = vit_embeds / vit_embeds.norm(dim=-1, keepdim=True)
|
| 92 |
+
# similarity = text_embeds @ vit_embeds.T
|
| 93 |
+
# resized_size = size1 if size1 is not None else size2
|
| 94 |
+
|
| 95 |
+
# # print(f"text_embeds shape: {text_embeds.shape}, numel: {text_embeds.numel()}") # text_embeds shape: torch.Size([4, 2048]), numel: 8192
|
| 96 |
+
# # print(f"vit_embeds shape: {vit_embeds.shape}, numel: {vit_embeds.numel()}") # vit_embeds shape: torch.Size([9728, 2048]), numel: 19922944
|
| 97 |
+
# # print(f"similarity shape: {similarity.shape}, numel: {similarity.numel()}")# similarity shape: torch.Size([4, 9728]), numel: 38912
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# # 生成可视化
|
| 101 |
+
# attn_map = similarity.reshape(len(text_embeds), resized_size[0], resized_size[1])
|
| 102 |
+
# # attn_map = similarity.reshape(len(text_embeds), *target_ratio)
|
| 103 |
+
# all_bpe_strings = [tokenizer.decode(input_id) for input_id in input_ids]
|
| 104 |
+
# current_vis = generate_similiarity_map([image], attn_map,
|
| 105 |
+
# [tokenizer.decode([i]) for i in input_ids],
|
| 106 |
+
# [], target_ratio, src_size)
|
| 107 |
+
|
| 108 |
+
# current_bpe = [tokenizer.decode([i]) for i in input_ids]
|
| 109 |
+
# # current_bpe[-1] = 'Input text'
|
| 110 |
+
# current_bpe[-1] = text
|
| 111 |
+
# print("current_vis",len(current_vis))
|
| 112 |
+
# print("current_bpe",len(current_bpe))
|
| 113 |
+
# return image, current_vis[0], current_bpe[0]
|
| 114 |
+
|
| 115 |
def process_image(model, tokenizer, transform, device, check_type, image, text):
|
| 116 |
global current_vis, current_bpe, current_index
|
| 117 |
src_size = image.size
|
| 118 |
+
# Ensure all processing is done on the correct device
|
| 119 |
+
image = image.to(device)
|
| 120 |
+
|
| 121 |
if 'TokenOCR' in check_type:
|
| 122 |
images, target_ratio = dynamic_preprocess(image, min_num=1, max_num=12,
|
| 123 |
image_size=model.config.force_image_size,
|
|
|
|
| 128 |
pixel_values = torch.stack([transform(image)]).to(device)
|
| 129 |
target_ratio = (1, 1)
|
| 130 |
|
|
|
|
| 131 |
text += ' '
|
| 132 |
input_ids = tokenizer(text)['input_ids'][1:]
|
| 133 |
input_ids = torch.tensor(input_ids, device=device)
|
| 134 |
+
|
|
|
|
| 135 |
with torch.no_grad():
|
| 136 |
if 'R50' in check_type:
|
| 137 |
text_embeds = model.language_embedding(input_ids)
|
| 138 |
else:
|
| 139 |
text_embeds = model.tok_embeddings(input_ids)
|
| 140 |
+
|
| 141 |
+
vit_embeds, size1 = model.forward_tokenocr(pixel_values)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
vit_embeds, size2 = post_process(vit_embeds, target_ratio, check_type)
|
| 143 |
+
|
|
|
|
| 144 |
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
|
| 145 |
vit_embeds = vit_embeds / vit_embeds.norm(dim=-1, keepdim=True)
|
| 146 |
similarity = text_embeds @ vit_embeds.T
|
| 147 |
resized_size = size1 if size1 is not None else size2
|
| 148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
attn_map = similarity.reshape(len(text_embeds), resized_size[0], resized_size[1])
|
|
|
|
| 150 |
all_bpe_strings = [tokenizer.decode(input_id) for input_id in input_ids]
|
| 151 |
+
current_vis = generate_similiarity_map([image.cpu()], attn_map.cpu(),
|
| 152 |
[tokenizer.decode([i]) for i in input_ids],
|
| 153 |
[], target_ratio, src_size)
|
| 154 |
+
|
| 155 |
current_bpe = [tokenizer.decode([i]) for i in input_ids]
|
|
|
|
| 156 |
current_bpe[-1] = text
|
| 157 |
+
return image.cpu(), current_vis[0], current_bpe[0]
|
|
|
|
|
|
|
| 158 |
|
| 159 |
# 事件处理函数
|
| 160 |
def update_index(change):
|
|
|
|
| 166 |
# 使用HTML标签来设置字体大小、颜色,加粗,并居中
|
| 167 |
return f"<div style='text-align:center; font-size:20px;'><strong>Current BPE: <span style='color:red;'>{bpe}</span></strong></div>"
|
| 168 |
|
| 169 |
+
def update_slider_index(x):
|
| 170 |
+
global current_vis, current_bpe, current_index
|
| 171 |
+
print(f"x: {x}, current_vis length: {len(current_vis)}, current_bpe length: {len(current_bpe)}")
|
| 172 |
+
if 0 <= x < len(current_vis) and 0 <= x < len(current_bpe):
|
| 173 |
+
return current_vis[x], format_bpe_display(current_bpe[x])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
else:
|
| 175 |
+
return None, "索引超出范围"
|
|
|
|
|
|
|
| 176 |
|
| 177 |
|
| 178 |
|
|
|
|
| 230 |
# return image, vis, bpe_text, slider_max_val
|
| 231 |
|
| 232 |
@spaces.GPU
|
| 233 |
+
def on_run_clicked(model_type, image, text):
|
| 234 |
+
global current_vis, current_bpe, current_index
|
| 235 |
+
current_index = 0
|
| 236 |
model, tokenizer, transform, device = load_model(model_type)
|
|
|
|
| 237 |
image, vis, bpe = process_image(model, tokenizer, transform, device, model_type, image, text)
|
| 238 |
+
slider_max_val = len(current_bpe) - 1
|
| 239 |
+
bpe_text = format_bpe_display(bpe)
|
| 240 |
+
return image, vis, bpe_text, slider_max_val
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
run_btn.click(
|
| 244 |
on_run_clicked,
|
| 245 |
+
inputs=[model_type, image_input, text_input],
|
| 246 |
+
outputs=[orig_img, heatmap, bpe_display, index_slider],
|
| 247 |
+
).then(
|
| 248 |
+
lambda max_val: (gr.update(visible=True), gr.update(visible=True, maximum=max_val, value=0), gr.update(visible=True), gr.update(visible=True)),
|
| 249 |
+
inputs=index_slider,
|
| 250 |
+
outputs=[prev_btn, index_slider, next_btn, bpe_display],
|
| 251 |
)
|
| 252 |
|
| 253 |
prev_btn.click(
|
|
|
|
| 261 |
)
|
| 262 |
|
| 263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
index_slider.change(
|
| 265 |
+
update_slider_index,
|
| 266 |
+
inputs=index_slider,
|
| 267 |
+
outputs=[heatmap, bpe_display]
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
|
| 271 |
|
| 272 |
if __name__ == "__main__":
|