Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,10 +21,6 @@ CHECKPOINTS = {
|
|
| 21 |
|
| 22 |
# 全局变量
|
| 23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 24 |
-
current_vis = []
|
| 25 |
-
current_bpe = []
|
| 26 |
-
current_index = 0
|
| 27 |
-
|
| 28 |
|
| 29 |
def load_model(check_type):
|
| 30 |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
@@ -54,129 +50,52 @@ def load_model(check_type):
|
|
| 54 |
|
| 55 |
return model.to(device), tokenizer, transform, device
|
| 56 |
|
| 57 |
-
|
| 58 |
-
# global current_vis, current_bpe, current_index
|
| 59 |
-
# src_size = image.size
|
| 60 |
-
# if 'TokenOCR' in check_type:
|
| 61 |
-
# images, target_ratio = dynamic_preprocess(image, min_num=1, max_num=12,
|
| 62 |
-
# image_size=model.config.force_image_size,
|
| 63 |
-
# use_thumbnail=model.config.use_thumbnail,
|
| 64 |
-
# return_ratio=True)
|
| 65 |
-
# pixel_values = torch.stack([transform(img) for img in images]).to(device)
|
| 66 |
-
# else:
|
| 67 |
-
# pixel_values = torch.stack([transform(image)]).to(device)
|
| 68 |
-
# target_ratio = (1, 1)
|
| 69 |
-
|
| 70 |
-
# # 文本处理
|
| 71 |
-
# text += ' '
|
| 72 |
-
# input_ids = tokenizer(text)['input_ids'][1:]
|
| 73 |
-
# input_ids = torch.tensor(input_ids, device=device)
|
| 74 |
-
|
| 75 |
-
# # 获取嵌入
|
| 76 |
-
# with torch.no_grad():
|
| 77 |
-
# if 'R50' in check_type:
|
| 78 |
-
# text_embeds = model.language_embedding(input_ids)
|
| 79 |
-
# else:
|
| 80 |
-
# text_embeds = model.tok_embeddings(input_ids)
|
| 81 |
-
|
| 82 |
-
# vit_embeds, size1 = model.forward_tokenocr(pixel_values.to(torch.bfloat16).to(device))
|
| 83 |
-
# print("vit_embeds",vit_embeds)
|
| 84 |
-
# print("vit_embeds,shape",vit_embeds.shape)
|
| 85 |
-
# print("target_ratio",target_ratio)
|
| 86 |
-
# print("check_type",check_type)
|
| 87 |
-
# vit_embeds, size2 = post_process(vit_embeds, target_ratio, check_type)
|
| 88 |
-
|
| 89 |
-
# # 计算相似度
|
| 90 |
-
# text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
|
| 91 |
-
# vit_embeds = vit_embeds / vit_embeds.norm(dim=-1, keepdim=True)
|
| 92 |
-
# similarity = text_embeds @ vit_embeds.T
|
| 93 |
-
# resized_size = size1 if size1 is not None else size2
|
| 94 |
-
|
| 95 |
-
# # print(f"text_embeds shape: {text_embeds.shape}, numel: {text_embeds.numel()}") # text_embeds shape: torch.Size([4, 2048]), numel: 8192
|
| 96 |
-
# # print(f"vit_embeds shape: {vit_embeds.shape}, numel: {vit_embeds.numel()}") # vit_embeds shape: torch.Size([9728, 2048]), numel: 19922944
|
| 97 |
-
# # print(f"similarity shape: {similarity.shape}, numel: {similarity.numel()}")# similarity shape: torch.Size([4, 9728]), numel: 38912
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
# # 生成可视化
|
| 101 |
-
# attn_map = similarity.reshape(len(text_embeds), resized_size[0], resized_size[1])
|
| 102 |
-
# # attn_map = similarity.reshape(len(text_embeds), *target_ratio)
|
| 103 |
-
# all_bpe_strings = [tokenizer.decode(input_id) for input_id in input_ids]
|
| 104 |
-
# current_vis = generate_similiarity_map([image], attn_map,
|
| 105 |
-
# [tokenizer.decode([i]) for i in input_ids],
|
| 106 |
-
# [], target_ratio, src_size)
|
| 107 |
-
|
| 108 |
-
# current_bpe = [tokenizer.decode([i]) for i in input_ids]
|
| 109 |
-
# # current_bpe[-1] = 'Input text'
|
| 110 |
-
# current_bpe[-1] = text
|
| 111 |
-
# print("current_vis",len(current_vis))
|
| 112 |
-
# print("current_bpe",len(current_bpe))
|
| 113 |
-
# return image, current_vis[0], current_bpe[0]
|
| 114 |
-
|
| 115 |
-
def process_image(model, tokenizer, transform, device, check_type, image, text):
|
| 116 |
-
global current_vis, current_bpe, current_index
|
| 117 |
src_size = image.size
|
| 118 |
-
|
| 119 |
-
# Convert PIL Image to Tensor and move to the appropriate device
|
| 120 |
if 'TokenOCR' in check_type:
|
| 121 |
-
# If dynamic preprocessing is required, handle differently
|
| 122 |
images, target_ratio = dynamic_preprocess(image, min_num=1, max_num=12,
|
| 123 |
image_size=model.config.force_image_size,
|
| 124 |
use_thumbnail=model.config.use_thumbnail,
|
| 125 |
return_ratio=True)
|
| 126 |
-
pixel_values = torch.stack([transform(img)
|
| 127 |
else:
|
| 128 |
-
|
| 129 |
-
pixel_values = transform(image).unsqueeze(0).to(device) # Add batch dimension and move to device
|
| 130 |
target_ratio = (1, 1)
|
| 131 |
|
|
|
|
| 132 |
text += ' '
|
| 133 |
-
input_ids = tokenizer(text
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
with torch.no_grad():
|
| 136 |
if 'R50' in check_type:
|
| 137 |
text_embeds = model.language_embedding(input_ids)
|
| 138 |
else:
|
| 139 |
text_embeds = model.tok_embeddings(input_ids)
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
vit_embeds, size1 = model.forward_tokenocr(pixel_values.to(torch.bfloat16))
|
| 143 |
-
|
| 144 |
vit_embeds, size2 = post_process(vit_embeds, target_ratio, check_type)
|
| 145 |
-
|
|
|
|
| 146 |
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
|
| 147 |
vit_embeds = vit_embeds / vit_embeds.norm(dim=-1, keepdim=True)
|
| 148 |
similarity = text_embeds @ vit_embeds.T
|
| 149 |
resized_size = size1 if size1 is not None else size2
|
| 150 |
|
| 151 |
attn_map = similarity.reshape(len(text_embeds), resized_size[0], resized_size[1])
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
# 事件处理函数
|
| 162 |
-
def update_index(change):
|
| 163 |
-
global current_vis, current_bpe, current_index
|
| 164 |
-
current_index = max(0, min(len(current_vis) - 1, current_index + change))
|
| 165 |
-
return current_vis[current_index], format_bpe_display(current_bpe[current_index])
|
| 166 |
-
|
| 167 |
-
def format_bpe_display(bpe):
|
| 168 |
-
# 使用HTML标签来设置字体大小、颜色,加粗,并居中
|
| 169 |
-
return f"<div style='text-align:center; font-size:20px;'><strong>Current BPE: <span style='color:red;'>{bpe}</span></strong></div>"
|
| 170 |
-
|
| 171 |
-
def update_slider_index(x):
|
| 172 |
-
global current_vis, current_bpe, current_index
|
| 173 |
-
print(f"x: {x}, current_vis length: {len(current_vis)}, current_bpe length: {len(current_bpe)}")
|
| 174 |
-
if 0 <= x < len(current_vis) and 0 <= x < len(current_bpe):
|
| 175 |
-
return current_vis[x], format_bpe_display(current_bpe[x])
|
| 176 |
-
else:
|
| 177 |
-
return None, "索引超出范围"
|
| 178 |
-
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
# Gradio界面
|
| 182 |
with gr.Blocks(title="BPE Visualization Demo") as demo:
|
|
@@ -218,58 +137,48 @@ with gr.Blocks(title="BPE Visualization Demo") as demo:
|
|
| 218 |
|
| 219 |
bpe_display = gr.Markdown("Current BPE: ", visible=False)
|
| 220 |
|
| 221 |
-
|
| 222 |
-
# @spaces.GPU
|
| 223 |
-
# def on_run_clicked(model_type, image, text):
|
| 224 |
-
# global current_vis, current_bpe, current_index
|
| 225 |
-
# current_index = 0 # Reset index when new image is processed
|
| 226 |
-
# image, vis, bpe = process_image(*load_model(model_type), model_type, image, text)
|
| 227 |
-
# # Update the slider range and set value to 0
|
| 228 |
-
# slider_max_val = len(current_bpe) - 1
|
| 229 |
-
# bpe_text = format_bpe_display(bpe)
|
| 230 |
-
# print("current_vis",len(current_vis))
|
| 231 |
-
# print("current_bpe",len(current_bpe))
|
| 232 |
-
# return image, vis, bpe_text, slider_max_val
|
| 233 |
|
| 234 |
@spaces.GPU
|
| 235 |
-
def on_run_clicked(model_type, image, text):
|
| 236 |
-
|
| 237 |
-
current_index = 0
|
| 238 |
-
model, tokenizer, transform, device = load_model(model_type)
|
| 239 |
-
image, vis, bpe = process_image(model, tokenizer, transform, device, model_type, image, text)
|
| 240 |
-
slider_max_val = len(current_bpe) - 1
|
| 241 |
bpe_text = format_bpe_display(bpe)
|
| 242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
-
|
| 245 |
run_btn.click(
|
| 246 |
on_run_clicked,
|
| 247 |
-
inputs=[model_type, image_input, text_input],
|
| 248 |
-
outputs=[orig_img, heatmap, bpe_display
|
| 249 |
-
).then(
|
| 250 |
-
lambda max_val: (gr.update(visible=True), gr.update(visible=True, maximum=max_val, value=0), gr.update(visible=True), gr.update(visible=True)),
|
| 251 |
-
inputs=index_slider,
|
| 252 |
-
outputs=[prev_btn, index_slider, next_btn, bpe_display],
|
| 253 |
)
|
| 254 |
|
| 255 |
prev_btn.click(
|
| 256 |
-
lambda: (*update_index(-1), current_index),
|
|
|
|
| 257 |
outputs=[heatmap, bpe_display, index_slider]
|
| 258 |
)
|
| 259 |
|
| 260 |
next_btn.click(
|
| 261 |
-
lambda: (*update_index(1), current_index),
|
|
|
|
| 262 |
outputs=[heatmap, bpe_display, index_slider]
|
| 263 |
)
|
| 264 |
|
| 265 |
|
| 266 |
index_slider.change(
|
| 267 |
-
update_slider_index,
|
| 268 |
-
inputs=index_slider,
|
| 269 |
outputs=[heatmap, bpe_display]
|
| 270 |
)
|
| 271 |
|
| 272 |
-
|
| 273 |
-
|
| 274 |
if __name__ == "__main__":
|
| 275 |
-
demo.launch()
|
|
|
|
| 21 |
|
| 22 |
# 全局变量
|
| 23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
def load_model(check_type):
|
| 26 |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 50 |
|
| 51 |
return model.to(device), tokenizer, transform, device
|
| 52 |
|
| 53 |
+
def process_image(model, tokenizer, transform, device, check_type, image, text, state):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
src_size = image.size
|
|
|
|
|
|
|
| 55 |
if 'TokenOCR' in check_type:
|
|
|
|
| 56 |
images, target_ratio = dynamic_preprocess(image, min_num=1, max_num=12,
|
| 57 |
image_size=model.config.force_image_size,
|
| 58 |
use_thumbnail=model.config.use_thumbnail,
|
| 59 |
return_ratio=True)
|
| 60 |
+
pixel_values = torch.stack([transform(img) for img in images]).to(device)
|
| 61 |
else:
|
| 62 |
+
pixel_values = torch.stack([transform(image)]).to(device)
|
|
|
|
| 63 |
target_ratio = (1, 1)
|
| 64 |
|
| 65 |
+
# 文本处理
|
| 66 |
text += ' '
|
| 67 |
+
input_ids = tokenizer(text)['input_ids'][1:]
|
| 68 |
+
input_ids = torch.tensor(input_ids, device=device)
|
| 69 |
+
|
| 70 |
+
# 获取嵌入
|
| 71 |
with torch.no_grad():
|
| 72 |
if 'R50' in check_type:
|
| 73 |
text_embeds = model.language_embedding(input_ids)
|
| 74 |
else:
|
| 75 |
text_embeds = model.tok_embeddings(input_ids)
|
| 76 |
+
|
| 77 |
+
vit_embeds, size1 = model.forward_tokenocr(pixel_values.to(torch.bfloat16).to(device))
|
|
|
|
|
|
|
| 78 |
vit_embeds, size2 = post_process(vit_embeds, target_ratio, check_type)
|
| 79 |
+
|
| 80 |
+
# 计算相似度
|
| 81 |
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
|
| 82 |
vit_embeds = vit_embeds / vit_embeds.norm(dim=-1, keepdim=True)
|
| 83 |
similarity = text_embeds @ vit_embeds.T
|
| 84 |
resized_size = size1 if size1 is not None else size2
|
| 85 |
|
| 86 |
attn_map = similarity.reshape(len(text_embeds), resized_size[0], resized_size[1])
|
| 87 |
+
all_bpe_strings = [tokenizer.decode(input_id) for input_id in input_ids]
|
| 88 |
+
vis = generate_similiarity_map([image], attn_map,
|
| 89 |
+
[tokenizer.decode([i]) for i in input_ids],
|
| 90 |
+
[], target_ratio, src_size)
|
| 91 |
+
|
| 92 |
+
bpe = [tokenizer.decode([i]) for i in input_ids]
|
| 93 |
+
bpe[-1] = text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
+
# Store results in state
|
| 96 |
+
state['current_vis'] = vis
|
| 97 |
+
state['current_bpe'] = bpe
|
| 98 |
+
return image, vis[0], bpe[0], len(vis) - 1
|
| 99 |
|
| 100 |
# Gradio界面
|
| 101 |
with gr.Blocks(title="BPE Visualization Demo") as demo:
|
|
|
|
| 137 |
|
| 138 |
bpe_display = gr.Markdown("Current BPE: ", visible=False)
|
| 139 |
|
| 140 |
+
state = gr.State(current_vis=[], current_bpe=[], current_index=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
@spaces.GPU
|
| 143 |
+
def on_run_clicked(model_type, image, text, state):
|
| 144 |
+
image, vis, bpe, slider_max_val = process_image(*load_model(model_type), model_type, image, text, state)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
bpe_text = format_bpe_display(bpe)
|
| 146 |
+
index_slider.update(visible=True, maximum=slider_max_val, value=0)
|
| 147 |
+
prev_btn.update(visible=True)
|
| 148 |
+
next_btn.update(visible=True)
|
| 149 |
+
return image, vis, bpe_text
|
| 150 |
+
|
| 151 |
+
def update_index(change, state):
|
| 152 |
+
state['current_index'] = max(0, min(len(state['current_vis']) - 1, state['current_index'] + change))
|
| 153 |
+
return state['current_vis'][state['current_index']], format_bpe_display(state['current_bpe'][state['current_index']])
|
| 154 |
+
|
| 155 |
+
def format_bpe_display(bpe):
|
| 156 |
+
return f"<div style='text-align:center; font-size:20px;'><strong>Current BPE: <span style='color:red;'>{bpe}</span></strong></div>"
|
| 157 |
|
|
|
|
| 158 |
run_btn.click(
|
| 159 |
on_run_clicked,
|
| 160 |
+
inputs=[model_type, image_input, text_input, state],
|
| 161 |
+
outputs=[orig_img, heatmap, bpe_display],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
)
|
| 163 |
|
| 164 |
prev_btn.click(
|
| 165 |
+
lambda state: (*update_index(-1, state), state['current_index']),
|
| 166 |
+
inputs=[state],
|
| 167 |
outputs=[heatmap, bpe_display, index_slider]
|
| 168 |
)
|
| 169 |
|
| 170 |
next_btn.click(
|
| 171 |
+
lambda state: (*update_index(1, state), state['current_index']),
|
| 172 |
+
inputs=[state],
|
| 173 |
outputs=[heatmap, bpe_display, index_slider]
|
| 174 |
)
|
| 175 |
|
| 176 |
|
| 177 |
index_slider.change(
|
| 178 |
+
lambda x, state: update_slider_index(x, state),
|
| 179 |
+
inputs=[index_slider, state],
|
| 180 |
outputs=[heatmap, bpe_display]
|
| 181 |
)
|
| 182 |
|
|
|
|
|
|
|
| 183 |
if __name__ == "__main__":
|
| 184 |
+
demo.launch()
|