Spaces:
Sleeping
Sleeping
add description
Browse files
app.py
CHANGED
|
@@ -8,16 +8,6 @@ from globe import title, description, joinus, model_name, placeholder, modelinfo
|
|
| 8 |
tokenizer = DebertaV2Tokenizer.from_pretrained(model_name)
|
| 9 |
model = DebertaV2ForTokenClassification.from_pretrained(model_name)
|
| 10 |
|
| 11 |
-
# # Define id2label based on config.json
|
| 12 |
-
#
|
| 13 |
-
# id2label = {
|
| 14 |
-
# 0: "author", 1: "bibliography", 2: "caption", 3: "contact",
|
| 15 |
-
# 4: "date", 5: "dialog", 6: "footnote", 7: "keywords",
|
| 16 |
-
# 8: "math", 9: "paratext", 10: "separator", 11: "table",
|
| 17 |
-
# 12: "text", 13: "title"
|
| 18 |
-
# }
|
| 19 |
-
|
| 20 |
-
|
| 21 |
color_map = {
|
| 22 |
"author": "blue", "bibliography": "purple", "caption": "orange",
|
| 23 |
"contact": "cyan", "date": "green", "dialog": "yellow",
|
|
@@ -42,15 +32,15 @@ def segment_text(input_text):
|
|
| 42 |
segments = []
|
| 43 |
current_word = ""
|
| 44 |
for token, label_id in zip(tokens_decoded, predictions):
|
| 45 |
-
if token.startswith("β"): #
|
| 46 |
if current_word:
|
| 47 |
-
segments.append((current_word, id2label[label_id]))
|
| 48 |
-
current_word = token.replace("β", "") # new word
|
| 49 |
else:
|
| 50 |
current_word += token # append subword part to current word
|
| 51 |
|
| 52 |
if current_word:
|
| 53 |
-
segments.append((current_word, id2label[label_id]))
|
| 54 |
|
| 55 |
return segments
|
| 56 |
|
|
@@ -58,18 +48,17 @@ with gr.Blocks() as demo:
|
|
| 58 |
with gr.Row():
|
| 59 |
gr.Markdown(title)
|
| 60 |
with gr.Row():
|
| 61 |
-
with gr.
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
with gr.Accordion(label="Join Us", open=False):
|
| 65 |
-
gr.Markdown(joinus)
|
| 66 |
with gr.Column(scale=1):
|
| 67 |
with gr.Row():
|
| 68 |
with gr.Group():
|
| 69 |
gr.Markdown(modelinfor1)
|
| 70 |
with gr.Group():
|
| 71 |
gr.Markdown(modelinfor2)
|
| 72 |
-
|
|
|
|
| 73 |
with gr.Row():
|
| 74 |
input_text = gr.Textbox(label="Enter your text hereππ»", lines=5, placeholder=placeholder)
|
| 75 |
output_text = gr.HighlightedText(label=" PLeIAs/βοΈπ Segment Text", color_map=color_map, combine_adjacent=True, show_inline_category=True, show_legend=True)
|
|
|
|
| 8 |
tokenizer = DebertaV2Tokenizer.from_pretrained(model_name)
|
| 9 |
model = DebertaV2ForTokenClassification.from_pretrained(model_name)
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
color_map = {
|
| 12 |
"author": "blue", "bibliography": "purple", "caption": "orange",
|
| 13 |
"contact": "cyan", "date": "green", "dialog": "yellow",
|
|
|
|
| 32 |
segments = []
|
| 33 |
current_word = ""
|
| 34 |
for token, label_id in zip(tokens_decoded, predictions):
|
| 35 |
+
if token.startswith("β"): # handle wordpieces
|
| 36 |
if current_word:
|
| 37 |
+
segments.append((current_word, id2label[str(label_id)]))
|
| 38 |
+
current_word = token.replace("β", "") # start a new word
|
| 39 |
else:
|
| 40 |
current_word += token # append subword part to current word
|
| 41 |
|
| 42 |
if current_word:
|
| 43 |
+
segments.append((current_word, id2label[str(label_id)]))
|
| 44 |
|
| 45 |
return segments
|
| 46 |
|
|
|
|
| 48 |
with gr.Row():
|
| 49 |
gr.Markdown(title)
|
| 50 |
with gr.Row():
|
| 51 |
+
with gr.Group():
|
| 52 |
+
gr.Markdown(description)
|
| 53 |
+
with gr.Row():
|
|
|
|
|
|
|
| 54 |
with gr.Column(scale=1):
|
| 55 |
with gr.Row():
|
| 56 |
with gr.Group():
|
| 57 |
gr.Markdown(modelinfor1)
|
| 58 |
with gr.Group():
|
| 59 |
gr.Markdown(modelinfor2)
|
| 60 |
+
with gr.Accordion(label="Join Us", open=False):
|
| 61 |
+
gr.Markdown(joinus)
|
| 62 |
with gr.Row():
|
| 63 |
input_text = gr.Textbox(label="Enter your text hereππ»", lines=5, placeholder=placeholder)
|
| 64 |
output_text = gr.HighlightedText(label=" PLeIAs/βοΈπ Segment Text", color_map=color_map, combine_adjacent=True, show_inline_category=True, show_legend=True)
|