Spaces:
Sleeping
Sleeping
| import torch | |
| import torch_redstone as rst | |
| import transformers | |
| import numpy as np | |
| from torch import nn | |
| from typing import Tuple, List, Union, Optional | |
| from transformers import GPT2Tokenizer, GPT2LMHeadModel, GPT2Config | |
| from huggingface_hub import hf_hub_download | |
| from diffusers import StableUnCLIPImg2ImgPipeline | |
| N = type(None) | |
| V = np.array | |
| ARRAY = np.ndarray | |
| ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]] | |
| VS = Union[Tuple[V, ...], List[V]] | |
| VN = Union[V, N] | |
| VNS = Union[VS, N] | |
| T = torch.Tensor | |
| TS = Union[Tuple[T, ...], List[T]] | |
| TN = Optional[T] | |
| TNS = Union[Tuple[TN, ...], List[TN]] | |
| TSN = Optional[TS] | |
| TA = Union[T, ARRAY] | |
| D = torch.device | |
| class Wrapper(transformers.modeling_utils.PreTrainedModel): | |
| def __init__(self) -> None: | |
| super().__init__(transformers.configuration_utils.PretrainedConfig()) | |
| self.param = torch.nn.Parameter(torch.tensor(0.)) | |
| def forward(self, x): | |
| return rst.ObjectProxy(image_embeds=x) | |
| class MLP(nn.Module): | |
| def forward(self, x: T) -> T: | |
| return self.model(x) | |
| def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): | |
| super(MLP, self).__init__() | |
| layers = [] | |
| for i in range(len(sizes) -1): | |
| layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) | |
| if i < len(sizes) - 2: | |
| layers.append(act()) | |
| self.model = nn.Sequential(*layers) | |
| class ClipCaptionModel(nn.Module): | |
| #@functools.lru_cache #FIXME | |
| def get_dummy_token(self, batch_size: int, device: D) -> T: | |
| return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) | |
| def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None): | |
| embedding_text = self.gpt.transformer.wte(tokens) | |
| prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) | |
| #print(embedding_text.size()) #torch.Size([5, 67, 768]) | |
| #print(prefix_projections.size()) #torch.Size([5, 1, 768]) | |
| embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) | |
| if labels is not None: | |
| dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) | |
| labels = torch.cat((dummy_token, tokens), dim=1) | |
| out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) | |
| return out | |
| def __init__(self, prefix_length: int, prefix_size: int = 512): | |
| super(ClipCaptionModel, self).__init__() | |
| self.prefix_length = prefix_length | |
| self.gpt = GPT2LMHeadModel(GPT2Config.from_pretrained('gpt2')) | |
| self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] | |
| if prefix_length > 10: # not enough memory | |
| self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length) | |
| else: | |
| self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length)) | |
| class ClipCaptionPrefix(ClipCaptionModel): | |
| def parameters(self, recurse: bool = True): | |
| return self.clip_project.parameters() | |
| def train(self, mode: bool = True): | |
| super(ClipCaptionPrefix, self).train(mode) | |
| self.gpt.eval() | |
| return self | |
| def generate2( | |
| model, | |
| tokenizer, | |
| tokens=None, | |
| prompt=None, | |
| embed=None, | |
| entry_count=1, | |
| entry_length=67, # maximum number of words | |
| top_p=0.8, | |
| temperature=1., | |
| stop_token: str = '.', | |
| ): | |
| model.eval() | |
| generated_num = 0 | |
| generated_list = [] | |
| stop_token_index = tokenizer.encode(stop_token)[0] | |
| filter_value = -float("Inf") | |
| device = next(model.parameters()).device | |
| score_col = [] | |
| with torch.no_grad(): | |
| for entry_idx in range(entry_count): | |
| if embed is not None: | |
| generated = embed | |
| else: | |
| if tokens is None: | |
| tokens = torch.tensor(tokenizer.encode(prompt)) | |
| tokens = tokens.unsqueeze(0).to(device) | |
| generated = model.gpt.transformer.wte(tokens) | |
| for i in range(entry_length): | |
| outputs = model.gpt(inputs_embeds=generated) | |
| logits = outputs.logits | |
| logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) | |
| sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
| cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) | |
| sorted_indices_to_remove = cumulative_probs > top_p | |
| sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ | |
| ..., :-1 | |
| ].clone() | |
| sorted_indices_to_remove[..., 0] = 0 | |
| indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
| logits[:, indices_to_remove] = filter_value | |
| next_token = torch.argmax(torch.softmax(logits, dim=-1), -1).reshape(1, 1) | |
| score = torch.softmax(logits, dim=-1).reshape(-1)[next_token.item()].item() | |
| score_col.append(score) | |
| next_token_embed = model.gpt.transformer.wte(next_token) | |
| if tokens is None: | |
| tokens = next_token | |
| else: | |
| tokens = torch.cat((tokens, next_token), dim=1) | |
| generated = torch.cat((generated, next_token_embed), dim=1) | |
| if stop_token_index == next_token.item(): | |
| break | |
| output_list = list(tokens.squeeze(0).cpu().numpy()) | |
| output_text = tokenizer.decode(output_list) | |
| generated_list.append(output_text) | |
| return generated_list[0] | |
| def pc_to_text(pc_encoder: torch.nn.Module, pc, cond_scale): | |
| ref_dev = next(pc_encoder.parameters()).device | |
| prefix = pc_encoder(torch.tensor(pc.T[None], device=ref_dev)) | |
| prefix = prefix.float() * cond_scale | |
| prefix = prefix.to(next(model.parameters()).device) | |
| prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) | |
| text = generate2(model, tokenizer, embed=prefix_embed) | |
| return text | |
| def pc_to_image(pc_encoder: torch.nn.Module, pc, prompt, noise_level, width, height, cfg_scale, num_steps, callback): | |
| ref_dev = next(pc_encoder.parameters()).device | |
| enc = pc_encoder(torch.tensor(pc.T[None], device=ref_dev)) | |
| enc = torch.nn.functional.normalize(enc, dim=-1) * (768 ** 0.5) / 2 | |
| if torch.cuda.is_available(): | |
| enc = enc.to('cuda:' + str(torch.cuda.current_device())) | |
| # enc = enc.type(half) | |
| # with torch.autocast("cuda"): | |
| return pipe( | |
| prompt=', '.join(["best quality"] + ([prompt] if prompt else [])), | |
| negative_prompt="cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry", | |
| image=enc, | |
| width=width, height=height, | |
| guidance_scale=cfg_scale, | |
| noise_level=noise_level, | |
| callback=callback, | |
| num_inference_steps=num_steps | |
| ).images[0] | |
| pipe = StableUnCLIPImg2ImgPipeline.from_pretrained( | |
| "diffusers/stable-diffusion-2-1-unclip-i2i-l", | |
| # variant="fp16", | |
| image_encoder = Wrapper() | |
| ) | |
| # pe = pipe.text_encoder.text_model.embeddings | |
| # pe.position_ids = torch.arange(pe.position_ids.shape[-1]).expand((1, -1)).to(pe.position_ids) # workaround | |
| if torch.cuda.is_available(): | |
| pipe = pipe.to('cuda:' + str(torch.cuda.current_device())) | |
| pipe.enable_model_cpu_offload(torch.cuda.current_device()) | |
| pipe.enable_attention_slicing() | |
| pipe.enable_vae_slicing() | |
| tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
| prefix_length = 10 | |
| model = ClipCaptionModel(prefix_length) | |
| # print(model.gpt_embedding_size) | |
| model.load_state_dict(torch.load(hf_hub_download('OpenShape/clipcap-cc', 'conceptual_weights.pt'), map_location='cpu')) | |
| model.eval() | |
| if torch.cuda.is_available(): | |
| model = model.cuda() |