Spaces:
Sleeping
Sleeping
| import numpy | |
| import trimesh | |
| import trimesh.sample | |
| import trimesh.visual | |
| import trimesh.proximity | |
| import objaverse | |
| import streamlit as st | |
| import plotly.graph_objects as go | |
| import matplotlib.pyplot as plotlib | |
| def get_bytes(x: str): | |
| import io, requests | |
| return io.BytesIO(requests.get(x).content) | |
| def get_image(x: str): | |
| try: | |
| return plotlib.imread(get_bytes(x), 'auto') | |
| except Exception: | |
| raise ValueError("Invalid image", x) | |
| def model_to_pc(mesh: trimesh.Trimesh, n_sample_points=10000): | |
| f32 = numpy.float32 | |
| rad = numpy.sqrt(mesh.area / (3 * n_sample_points)) | |
| for _ in range(24): | |
| pcd, face_idx = trimesh.sample.sample_surface_even(mesh, n_sample_points, rad) | |
| rad *= 0.85 | |
| if len(pcd) == n_sample_points: | |
| break | |
| else: | |
| raise ValueError("Bad geometry, cannot finish sampling.", mesh.area) | |
| if isinstance(mesh.visual, trimesh.visual.ColorVisuals): | |
| rgba = mesh.visual.face_colors[face_idx] | |
| elif isinstance(mesh.visual, trimesh.visual.TextureVisuals): | |
| bc = trimesh.proximity.points_to_barycentric(mesh.triangles[face_idx], pcd) | |
| if mesh.visual.uv is None or len(mesh.visual.uv) < mesh.faces[face_idx].max(): | |
| uv = numpy.zeros([len(bc), 2]) | |
| st.warning("Invalid UV, filling with zeroes") | |
| else: | |
| uv = numpy.einsum('ntc,nt->nc', mesh.visual.uv[mesh.faces[face_idx]], bc) | |
| material = mesh.visual.material | |
| if hasattr(material, 'materials'): | |
| if len(material.materials) == 0: | |
| rgba = numpy.ones_like(pcd) * 0.8 | |
| texture = None | |
| st.warning("Empty MultiMaterial found, falling back to light grey") | |
| else: | |
| material = material.materials[0] | |
| if hasattr(material, 'image'): | |
| texture = material.image | |
| if texture is None: | |
| rgba = numpy.zeros([len(uv), len(material.main_color)]) + material.main_color | |
| elif hasattr(material, 'baseColorTexture'): | |
| texture = material.baseColorTexture | |
| if texture is None: | |
| rgba = numpy.zeros([len(uv), len(material.main_color)]) + material.main_color | |
| else: | |
| texture = None | |
| rgba = numpy.ones_like(pcd) * 0.8 | |
| st.warning("Unknown material, falling back to light grey") | |
| if texture is not None: | |
| rgba = trimesh.visual.uv_to_interpolated_color(uv, texture) | |
| if rgba.max() > 1: | |
| if rgba.max() > 255: | |
| rgba = rgba.astype(f32) / rgba.max() | |
| else: | |
| rgba = rgba.astype(f32) / 255.0 | |
| return numpy.concatenate([numpy.array(pcd, f32), numpy.array(rgba, f32)[:, :3]], axis=-1) | |
| def trimesh_to_pc(scene_or_mesh): | |
| if isinstance(scene_or_mesh, trimesh.Scene): | |
| meshes = [] | |
| for node_name in scene_or_mesh.graph.nodes_geometry: | |
| # which geometry does this node refer to | |
| transform, geometry_name = scene_or_mesh.graph[node_name] | |
| # get the actual potential mesh instance | |
| geometry = scene_or_mesh.geometry[geometry_name].copy() | |
| if not hasattr(geometry, 'triangles'): | |
| continue | |
| geometry: trimesh.Trimesh | |
| geometry = geometry.apply_transform(transform) | |
| meshes.append(geometry) | |
| total_area = sum(geometry.area for geometry in meshes) | |
| if total_area < 1e-6: | |
| raise ValueError("Bad geometry: total area too small (< 1e-6)") | |
| pcs = [] | |
| for geometry in meshes: | |
| pcs.append(model_to_pc(geometry, max(1, round(geometry.area / total_area * 10000)))) | |
| if not len(pcs): | |
| raise ValueError("Unsupported mesh object: no triangles found") | |
| return numpy.concatenate(pcs) | |
| else: | |
| assert isinstance(scene_or_mesh, trimesh.Trimesh) | |
| return model_to_pc(scene_or_mesh, 10000) | |
| def input_3d_shape(key=None): | |
| if key is None: | |
| objaid_key = model_key = npy_key = swap_key = None | |
| else: | |
| objaid_key = key + "_objaid" | |
| model_key = key + "_model" | |
| npy_key = key + "_npy" | |
| swap_key = key + "_swap" | |
| pc_mode = st.sidebar.selectbox( | |
| 'Choose the input for Point Cloud', | |
| ("an Objaverse ID", "a Model", "a Numpy Array") | |
| ) | |
| if pc_mode == "an Objaverse ID": | |
| objaid = st.sidebar.text_input("Enter an Objaverse ID", key=objaid_key) | |
| model = npy = None | |
| elif pc_mode == "a Model": | |
| model = st.sidebar.file_uploader("Upload a model (.glb/.obj/.ply)", key=model_key) | |
| objaid = npy = None | |
| elif pc_mode == "a Numpy Array": | |
| npy = st.sidebar.file_uploader("Upload a numpy array (.npy of Nx3 XYZ or Nx6 XYZRGB)", key=npy_key) | |
| objaid = model = None | |
| swap_yz_axes = st.sidebar.radio("Gravity", ["Y is up (for most Objaverse shapes)", "Z is up"], key=swap_key) == "Z is up" | |
| f32 = numpy.float32 | |
| def load_data(prog): | |
| # load the model | |
| prog.progress(0.05, "Preparing Point Cloud") | |
| if npy is not None: | |
| pc: numpy.ndarray = numpy.load(npy) | |
| elif model is not None: | |
| pc = trimesh_to_pc(trimesh.load(model, model.name.split(".")[-1])) | |
| elif objaid: | |
| prog.progress(0.1, "Downloading Objaverse Object") | |
| objamodel = objaverse.load_objects([objaid])[objaid] | |
| prog.progress(0.2, "Preparing Point Cloud") | |
| pc = trimesh_to_pc(trimesh.load(objamodel)) | |
| else: | |
| raise ValueError("You have to supply 3D input!") | |
| prog.progress(0.25, "Preprocessing Point Cloud") | |
| assert pc.ndim == 2, "invalid pc shape: ndim = %d != 2" % pc.ndim | |
| assert pc.shape[1] in [3, 6], "invalid pc shape: should have 3/6 channels, got %d" % pc.shape[1] | |
| pc = pc.astype(f32) | |
| if swap_yz_axes: | |
| pc[:, [1, 2]] = pc[:, [2, 1]] | |
| pc[:, :3] = pc[:, :3] - numpy.mean(pc[:, :3], axis=0) | |
| pc[:, :3] = pc[:, :3] / numpy.linalg.norm(pc[:, :3], axis=-1).max() | |
| if pc.shape[1] == 3: | |
| pc = numpy.concatenate([pc, numpy.ones_like(pc) * 0.4], axis=-1) | |
| prog.progress(0.27, "Normalized Point Cloud") | |
| if pc.shape[0] >= 10000: | |
| pc = pc[numpy.random.permutation(len(pc))[:10000]] | |
| elif pc.shape[0] == 0: | |
| raise ValueError("Got empty point cloud!") | |
| elif pc.shape[0] < 10000: | |
| pc = numpy.concatenate([pc, pc[numpy.random.randint(len(pc), size=[10000 - len(pc)])]]) | |
| prog.progress(0.3, "Preprocessed Point Cloud") | |
| return pc.astype(f32) | |
| return load_data | |
| def render_pc(pc): | |
| rand = numpy.random.permutation(len(pc))[:2048] | |
| pc = pc[rand] | |
| rgb = (pc[:, 3:] * 255).astype(numpy.uint8) | |
| g = go.Scatter3d( | |
| x=pc[:, 0], y=pc[:, 1], z=pc[:, 2], | |
| mode='markers', | |
| marker=dict(size=10, color=[f'rgb({rgb[i, 0]}, {rgb[i, 1]}, {rgb[i, 2]})' for i in range(len(pc))]), | |
| ) | |
| fig = go.Figure(data=[g]) | |
| fig.update_layout(scene_camera=dict(up=dict(x=0, y=1, z=0))) | |
| fig.update_layout(scene = dict(xaxis = dict(showgrid = False,showticklabels = False), | |
| yaxis = dict(showgrid = False,showticklabels = False), | |
| zaxis = dict(showgrid = False,showticklabels = False) | |
| )) | |
| fig.update_scenes(aspectmode="cube") | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.plotly_chart(fig, use_container_width=True) | |
| # st.caption("Point Cloud Preview") | |
| return col2 | |