Spaces:
Sleeping
Sleeping
| import torch.nn as nn | |
| class MLP(nn.Module): | |
| def __init__(self, in_out_features, hidden_features=512, drop=0.2): | |
| super().__init__() | |
| self.classifier = nn.Sequential( | |
| nn.Linear(in_out_features, hidden_features), | |
| nn.BatchNorm1d(hidden_features), | |
| nn.GELU(), | |
| nn.Dropout(drop), | |
| nn.Linear(hidden_features, in_out_features), | |
| nn.BatchNorm1d(in_out_features), | |
| nn.GELU(), | |
| nn.Dropout(drop), | |
| ) | |
| def forward(self, x): | |
| return self.classifier(x) |