| import gradio as gr | |
| from diffusers import AutoencoderKL | |
| from pipeline_demofusion_sdxl import DemoFusionSDXLPipeline | |
| from gradio_imageslider import ImageSlider | |
| import torch, gc | |
| from torchvision import transforms | |
| from PIL import Image | |
| def load_and_process_image(pil_image): | |
| transform = transforms.Compose( | |
| [ | |
| transforms.Resize((1024, 1024)), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
| ] | |
| ) | |
| image = transform(pil_image) | |
| image = image.unsqueeze(0).half() | |
| return image | |
| def pad_image(image): | |
| w, h = image.size | |
| if w == h: | |
| return image | |
| elif w > h: | |
| new_image = Image.new(image.mode, (w, w), (0, 0, 0)) | |
| pad_w = 0 | |
| pad_h = (w - h) // 2 | |
| new_image.paste(image, (0, pad_h)) | |
| return new_image | |
| else: | |
| new_image = Image.new(image.mode, (h, h), (0, 0, 0)) | |
| pad_w = (h - w) // 2 | |
| pad_h = 0 | |
| new_image.paste(image, (pad_w, 0)) | |
| return new_image | |
| def generate_images(prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, cosine_scale_1, cosine_scale_2, cosine_scale_3, sigma, view_batch_size, stride, seed, input_image): | |
| padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB") | |
| image_lr = load_and_process_image(padded_image).to('cuda') | |
| vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
| pipe = DemoFusionSDXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16) | |
| pipe = pipe.to("cuda") | |
| generator = torch.Generator(device='cuda') | |
| generator = generator.manual_seed(int(seed)) | |
| images = pipe(prompt, negative_prompt=negative_prompt, generator=generator, | |
| height=int(height), width=int(width), view_batch_size=int(view_batch_size), stride=int(stride), | |
| num_inference_steps=int(num_inference_steps), guidance_scale=guidance_scale, | |
| cosine_scale_1=cosine_scale_1, cosine_scale_2=cosine_scale_2, cosine_scale_3=cosine_scale_3, sigma=sigma, | |
| multi_decoder=True, show_image=False, lowvram=False, image_lr=image_lr | |
| ) | |
| for i, image in enumerate(images): | |
| image.save('image_'+str(i)+'.png') | |
| pipe = None | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| return (images[0], images[-1]) | |
| with gr.Blocks(title=f"DemoFusion") as demo: | |
| with gr.Column(): | |
| with gr.Row(): | |
| with gr.Group(): | |
| image_input = gr.Image(type="pil", label="Input Image") | |
| prompt = gr.Textbox(label="Prompt (Note: an accurate prompt to describe the content and style of the input will significantly improve performance.)", value="8k high definition, high details") | |
| negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic") | |
| width = gr.Slider(minimum=1024, maximum=4096, step=1024, value=2048, label="Width") | |
| height = gr.Slider(minimum=1024, maximum=4096, step=1024, value=2048, label="Height") | |
| num_inference_steps = gr.Slider(minimum=5, maximum=100, step=1, value=50, label="Num Inference Steps") | |
| guidance_scale = gr.Slider(minimum=1, maximum=20, step=0.1, value=7.5, label="Guidance Scale") | |
| cosine_scale_1 = gr.Slider(minimum=0, maximum=5, step=0.1, value=3, label="Cosine Scale 1") | |
| cosine_scale_2 = gr.Slider(minimum=0, maximum=5, step=0.1, value=1, label="Cosine Scale 2") | |
| cosine_scale_3 = gr.Slider(minimum=0, maximum=5, step=0.1, value=1, label="Cosine Scale 3") | |
| sigma = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=0.8, label="Sigma") | |
| view_batch_size = gr.Slider(minimum=4, maximum=32, step=4, value=16, label="View Batch Size") | |
| stride = gr.Slider(minimum=8, maximum=96, step=8, value=64, label="Stride") | |
| seed = gr.Number(label="Seed", value=2013) | |
| button = gr.Button() | |
| output_images = ImageSlider(show_label=False) | |
| button.click(fn=generate_images, inputs=[prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, cosine_scale_1, cosine_scale_2, cosine_scale_3, sigma, view_batch_size, stride, seed, image_input], outputs=[output_images], show_progress=True) | |
| demo.queue().launch(inline=False, share=True, debug=True) | |