PortIQ / app.py
Tulitula's picture
Create app.py
75878f6 verified
import os, io, math, json, traceback, warnings
warnings.filterwarnings("ignore")
from typing import List, Tuple, Dict, Optional
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
import gradio as gr
import requests
import yfinance as yf
from sentence_transformers import SentenceTransformer, util as st_util
# =========================
# Config
# =========================
DATA_DIR = "data"
os.makedirs(DATA_DIR, exist_ok=True)
DEFAULT_LOOKBACK_YEARS = 5
MAX_TICKERS = 30
MARKET_TICKER = "VOO" # proxy for market portfolio
BILLS_TICKER = "BILLS" # synthetic cash / T-Bills bucket
EMBED_MODEL_NAME = "BAAI/bge-base-en-v1.5" # fully local, no API keys
POS_COLS = ["ticker", "amount_usd", "weight_exposure", "beta"]
SUG_COLS = ["ticker", "weight_%", "amount_$"]
EFF_COLS = ["asset", "weight_%", "amount_$"]
N_SYNTH = 1000 # synthetic dataset size
MMR_K = 40 # shortlist size before MMR
MMR_LAMBDA = 0.65 # similarity vs diversity tradeoff
DEBUG = True # if True, surface tracebacks in the UI summary when something fails
# ---------------- FRED mapping (risk-free source) ----------------
FRED_MAP = [
(1, "DGS1"),
(2, "DGS2"),
(3, "DGS3"),
(5, "DGS5"),
(7, "DGS7"),
(10, "DGS10"),
(20, "DGS20"),
(30, "DGS30"),
(100,"DGS30"),
]
def fred_series_for_horizon(years: float) -> str:
y = max(1.0, min(100.0, float(years)))
for cutoff, code in FRED_MAP:
if y <= cutoff:
return code
return "DGS30"
def fetch_fred_yield_annual(code: str) -> float:
url = f"https://fred.stlouisfed.org/graph/fredgraph.csv?id={code}"
try:
r = requests.get(url, timeout=10)
r.raise_for_status()
df = pd.read_csv(io.StringIO(r.text))
s = pd.to_numeric(df.iloc[:, 1], errors="coerce").dropna()
return float(s.iloc[-1] / 100.0) if len(s) else 0.03
except Exception:
return 0.03
# =========================
# Data helpers
# =========================
def _to_cols_close(df: pd.DataFrame, tickers: List[str]) -> pd.DataFrame:
"""
Coerce yfinance download to single-level columns of closes/adj closes.
Handles Series, single-level, and MultiIndex frames safely.
"""
if df is None or df.empty:
return pd.DataFrame()
# If Series (one ticker)
if isinstance(df, pd.Series):
df = df.to_frame("Close")
# MultiIndex columns: (ticker, field)
if isinstance(df.columns, pd.MultiIndex):
fields = df.columns.get_level_values(1).unique().tolist()
field = "Adj Close" if "Adj Close" in fields else ("Close" if "Close" in fields else fields[0])
out = {}
for t in dict.fromkeys(tickers):
col = (t, field)
if col in df.columns:
out[t] = pd.to_numeric(df[col], errors="coerce")
return pd.DataFrame(out)
# Single-level columns: try common names
if "Adj Close" in df.columns:
col = pd.to_numeric(df["Adj Close"], errors="coerce")
col.name = tickers[0] if tickers else "SINGLE"
return col.to_frame()
if "Close" in df.columns:
col = pd.to_numeric(df["Close"], errors="coerce")
col.name = tickers[0] if tickers else "SINGLE"
return col.to_frame()
# Fallback to first numeric column
num_cols = [c for c in df.columns if pd.api.types.is_numeric_dtype(df[c])]
if num_cols:
col = pd.to_numeric(df[num_cols[0]], errors="coerce")
col.name = tickers[0] if tickers else "SINGLE"
return col.to_frame()
return pd.DataFrame()
def fetch_prices_monthly(tickers: List[str], years: int) -> pd.DataFrame:
tickers = [t for t in dict.fromkeys(tickers) if t]
if not tickers:
return pd.DataFrame()
start = (pd.Timestamp.today(tz="UTC") - pd.DateOffset(years=int(years), days=7)).date()
end = pd.Timestamp.today(tz="UTC").date()
df_raw = yf.download(
tickers, start=start, end=end,
interval="1mo", auto_adjust=True, progress=False, group_by="ticker",
threads=True,
)
df = _to_cols_close(df_raw, tickers)
if df.empty:
return df
df = df.dropna(how="all").fillna(method="ffill")
# Keep only requested columns if present
keep = [t for t in tickers if t in df.columns]
if not keep and df.shape[1] == 1:
# Single column; rename if needed
df.columns = [tickers[0]]
keep = [tickers[0]]
return df[keep] if keep else pd.DataFrame()
def monthly_returns(prices: pd.DataFrame) -> pd.DataFrame:
if prices is None or prices.empty:
return pd.DataFrame()
return prices.pct_change().dropna(how="all")
def validate_tickers(symbols: List[str], years: int) -> List[str]:
"""Return subset of symbols that have monthly data."""
symbols = [s.strip().upper() for s in symbols if s and isinstance(s, str)]
if not symbols:
return []
base = [s for s in symbols if s != MARKET_TICKER]
px = fetch_prices_monthly(base + [MARKET_TICKER], years)
if px.empty:
return [s for s in symbols if s == MARKET_TICKER] # maybe only market survives
ok = [s for s in symbols if s in px.columns]
return ok
# =========================
# Moments & CAPM
# =========================
def annualize_mean(m): return np.asarray(m, dtype=float) * 12.0
def annualize_sigma(s): return np.asarray(s, dtype=float) * math.sqrt(12.0)
def get_aligned_monthly_returns(symbols: List[str], years: int) -> pd.DataFrame:
uniq = [c for c in dict.fromkeys(symbols)]
if MARKET_TICKER not in uniq:
uniq.append(MARKET_TICKER)
px = fetch_prices_monthly(uniq, years)
rets = monthly_returns(px)
if rets.empty:
return pd.DataFrame()
cols = [c for c in uniq if c in rets.columns]
R = rets[cols].dropna(how="any")
return R.loc[:, ~R.columns.duplicated()]
def estimate_all_moments_aligned(symbols: List[str], years: int, rf_ann: float):
R = get_aligned_monthly_returns(symbols + [MARKET_TICKER], years)
if R.empty or MARKET_TICKER not in R.columns or R.shape[0] < 3:
raise ValueError("Not enough aligned data to estimate moments.")
rf_m = rf_ann / 12.0
m = R[MARKET_TICKER]
if isinstance(m, pd.DataFrame):
m = m.iloc[:, 0].squeeze()
mu_m_ann = float(annualize_mean(m.mean()))
sigma_m_ann = float(annualize_sigma(m.std(ddof=1)))
erp_ann = float(mu_m_ann - rf_ann)
ex_m = m - rf_m
var_m = float(np.var(ex_m.values, ddof=1))
var_m = max(var_m, 1e-9)
betas: Dict[str, float] = {}
for s in [c for c in R.columns if c != MARKET_TICKER]:
ex_s = R[s] - rf_m
cov_sm = float(np.cov(ex_s.values, ex_m.values, ddof=1)[0, 1])
betas[s] = cov_sm / var_m
betas[MARKET_TICKER] = 1.0
asset_cols = [c for c in R.columns if c != MARKET_TICKER]
cov_m = np.cov(R[asset_cols].values.T, ddof=1) if asset_cols else np.zeros((0, 0))
covA = pd.DataFrame(cov_m * 12.0, index=asset_cols, columns=asset_cols)
return {"betas": betas, "cov_ann": covA, "erp_ann": erp_ann, "sigma_m_ann": sigma_m_ann}
def capm_er(beta: float, rf_ann: float, erp_ann: float) -> float:
return float(rf_ann + beta * erp_ann)
def portfolio_stats(weights: Dict[str, float],
cov_ann: pd.DataFrame,
betas: Dict[str, float],
rf_ann: float,
erp_ann: float) -> Tuple[float, float, float]:
tickers = list(weights.keys())
if not tickers:
return 0.0, rf_ann, 0.0
w = np.array([weights[t] for t in tickers], dtype=float)
gross = float(np.sum(np.abs(w)))
if gross <= 1e-12:
return 0.0, rf_ann, 0.0
w_expo = w / gross
beta_p = float(np.dot([betas.get(t, 0.0) for t in tickers], w_expo))
er_capm = capm_er(beta_p, rf_ann, erp_ann)
cov = cov_ann.reindex(index=tickers, columns=tickers).fillna(0.0).to_numpy()
sigma_p = math.sqrt(max(float(w_expo.T @ cov @ w_expo), 0.0))
return beta_p, er_capm, sigma_p
# =========================
# Efficient (CML) alternatives
# =========================
def efficient_same_sigma(sigma_target: float, rf_ann: float, erp_ann: float, sigma_mkt: float):
if sigma_mkt <= 1e-12:
return 0.0, 1.0, rf_ann
a = sigma_target / sigma_mkt
return a, 1.0 - a, rf_ann + a * erp_ann
def efficient_same_return(mu_target: float, rf_ann: float, erp_ann: float, sigma_mkt: float):
if abs(erp_ann) <= 1e-12:
return 0.0, 1.0, 0.0
a = (mu_target - rf_ann) / erp_ann
return a, 1.0 - a, abs(a) * sigma_mkt
# =========================
# Plot
# =========================
def _pct_arr(x):
return np.asarray(x, dtype=float) * 100.0
def plot_cml(rf_ann, erp_ann, sigma_mkt,
pt_sigma_hist, pt_mu_capm,
same_sigma_sigma, same_sigma_mu,
same_mu_sigma, same_mu_mu) -> Image.Image:
fig = plt.figure(figsize=(6.6, 4.4), dpi=130)
xmax = max(0.3, sigma_mkt * 2.0, pt_sigma_hist * 1.4, same_mu_sigma * 1.4, same_sigma_sigma * 1.4)
xs = np.linspace(0, xmax, 160)
slope = erp_ann / max(sigma_mkt, 1e-12)
cml = rf_ann + slope * xs
plt.plot(_pct_arr(xs), _pct_arr(cml), label="CML via VOO", linewidth=1.8)
plt.scatter([0.0], [_pct_arr(rf_ann)], label="Risk-free", zorder=5)
plt.scatter([_pct_arr(sigma_mkt)], [_pct_arr(rf_ann + erp_ann)], label="Market (VOO)", zorder=5)
plt.scatter([_pct_arr(pt_sigma_hist)], [_pct_arr(pt_mu_capm)], label="Your portfolio (CAPM)", zorder=6)
plt.scatter([_pct_arr(same_sigma_sigma)], [_pct_arr(same_sigma_mu)], label="Efficient: same σ", zorder=5)
plt.scatter([_pct_arr(same_mu_sigma)], [_pct_arr(same_mu_mu)], label="Efficient: same μ", zorder=5)
# Guides
plt.plot([_pct_arr(pt_sigma_hist), _pct_arr(same_sigma_sigma)],
[_pct_arr(pt_mu_capm), _pct_arr(same_sigma_mu)],
ls="--", lw=1.1, alpha=0.7, color="gray")
plt.plot([_pct_arr(pt_sigma_hist), _pct_arr(same_mu_sigma)],
[_pct_arr(pt_mu_capm), _pct_arr(same_mu_mu)],
ls="--", lw=1.1, alpha=0.7, color="gray")
plt.xlabel("σ (annual, %)")
plt.ylabel("E[return] (annual, %)")
plt.legend(loc="best", fontsize=8)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format="png")
plt.close(fig)
buf.seek(0)
return Image.open(buf)
# =========================
# Synthetic dataset (for recommendations)
# =========================
def dirichlet_signed(k, rng):
signs = rng.choice([-1.0, 1.0], size=k, p=[0.25, 0.75])
raw = rng.dirichlet(np.ones(k))
gross = 1.0 + float(rng.gamma(2.0, 0.5))
return gross * signs * raw
def build_synth_dataset(universe: List[str],
cov_ann: pd.DataFrame,
betas: Dict[str, float],
rf_ann: float, erp_ann: float,
n_rows: int = N_SYNTH,
seed: int = 123) -> pd.DataFrame:
rng = np.random.default_rng(seed)
U = [u for u in universe if u != MARKET_TICKER] + [MARKET_TICKER]
rows = []
if not U:
return pd.DataFrame()
for i in range(n_rows):
k = int(rng.integers(low=max(1, min(2, len(U))), high=min(8, len(U)) + 1))
picks = list(rng.choice(U, size=k, replace=False))
w = dirichlet_signed(k, rng)
gross = float(np.sum(np.abs(w)))
if gross <= 1e-12:
continue
w_expo = w / gross
weights = {picks[j]: float(w_expo[j]) for j in range(k)}
beta_i, er_capm_i, sigma_i = portfolio_stats(weights, cov_ann, betas, rf_ann, erp_ann)
rows.append({
"id": int(i),
"tickers": ",".join(picks),
"weights": ",".join(f"{x:.6f}" for x in w_expo),
"beta": float(beta_i),
"er_capm": float(er_capm_i),
"sigma": float(sigma_i),
})
return pd.DataFrame(rows)
# =========================
# Embeddings + MMR selection
# =========================
_embedder = None
def get_embedder():
global _embedder
if _embedder is None:
_embedder = SentenceTransformer(EMBED_MODEL_NAME)
return _embedder
def row_to_sentence(row: pd.Series) -> str:
try:
ts = row["tickers"].split(",")
ws = [float(x) for x in row["weights"].split(",")]
pairs = ", ".join([f"{ts[i]} {ws[i]:+.2f}" for i in range(min(len(ts), len(ws)))])
except Exception:
pairs = ""
return (f"portfolio with sigma {row['sigma']:.4f}, "
f"capm_return {row['er_capm']:.4f}, "
f"beta {row['beta']:.3f}, "
f"exposures {pairs}")
def mmr_select(query_emb, cand_embs, k: int = 3, lambda_param: float = MMR_LAMBDA) -> List[int]:
if cand_embs.shape[0] <= k:
return list(range(cand_embs.shape[0]))
sim_to_query = st_util.cos_sim(query_emb, cand_embs).cpu().numpy().reshape(-1)
chosen = []
candidate_indices = list(range(cand_embs.shape[0]))
first = int(np.argmax(sim_to_query))
chosen.append(first)
candidate_indices.remove(first)
while len(chosen) < k and candidate_indices:
max_score = -1e9
max_idx = candidate_indices[0]
# compute diversity term against already chosen
chosen_stack = cand_embs[chosen]
for idx in candidate_indices:
sim_q = sim_to_query[idx]
sim_d = float(st_util.cos_sim(cand_embs[idx], chosen_stack).max().cpu().numpy())
mmr_score = lambda_param * sim_q - (1.0 - lambda_param) * sim_d
if mmr_score > max_score:
max_score = mmr_score
max_idx = idx
chosen.append(max_idx)
candidate_indices.remove(max_idx)
return chosen
# =========================
# Yahoo symbol search (for UX)
# =========================
def yahoo_search(query: str):
if not query or len(query.strip()) == 0:
return []
url = "https://query1.finance.yahoo.com/v1/finance/search"
params = {"q": query.strip(), "quotesCount": 10, "newsCount": 0}
headers = {"User-Agent": "Mozilla/5.0"}
try:
r = requests.get(url, params=params, headers=headers, timeout=10)
r.raise_for_status()
data = r.json()
out = []
for q in data.get("quotes", []):
sym = q.get("symbol")
name = q.get("shortname") or q.get("longname") or ""
exch = q.get("exchDisp") or ""
if sym and sym.isascii():
out.append(f"{sym} | {name} | {exch}")
if not out:
out = [f"{query.strip().upper()} | typed symbol | n/a"]
return out[:10]
except Exception:
return [f"{query.strip().upper()} | typed symbol | n/a"]
_last_matches = []
# =========================
# Formatting helpers
# =========================
def fmt_pct(x: float) -> str:
try:
return f"{float(x)*100:.2f}%"
except Exception:
return "n/a"
def fmt_money(x: float) -> str:
try:
return f"${float(x):,.0f}"
except Exception:
return "n/a"
# =========================
# Gradio callbacks
# =========================
HORIZON_YEARS = 5.0
RF_CODE = fred_series_for_horizon(HORIZON_YEARS)
RF_ANN = fetch_fred_yield_annual(RF_CODE)
def do_search(query):
global _last_matches
_last_matches = yahoo_search(query)
note = "Select a symbol from Matches, then click Add."
return note, gr.update(choices=_last_matches, value=None)
def add_symbol(selection: str, table: pd.DataFrame):
if selection and " | " in selection:
symbol = selection.split(" | ")[0].strip().upper()
elif isinstance(selection, str) and selection.strip():
symbol = selection.strip().upper()
else:
return table, "Pick a row from Matches first."
current = []
if isinstance(table, pd.DataFrame) and len(table) > 0 and "ticker" in table.columns:
current = [str(x).upper() for x in table["ticker"].tolist() if str(x) != "nan"]
tickers = current if symbol in current else current + [symbol]
tickers = [t for t in tickers if t]
val = validate_tickers(tickers, years=DEFAULT_LOOKBACK_YEARS)
tickers = [t for t in tickers if t in val]
amt_map = {}
if isinstance(table, pd.DataFrame) and len(table) > 0:
for _, r in table.iterrows():
t = str(r.get("ticker", "")).upper()
if t in tickers:
amt_map[t] = float(pd.to_numeric(r.get("amount_usd", 0.0), errors="coerce") or 0.0)
new_table = pd.DataFrame({"ticker": tickers, "amount_usd": [amt_map.get(t, 0.0) for t in tickers]})
msg = f"Added {symbol}" if symbol in tickers else f"{symbol} not valid or no data"
if len(new_table) > MAX_TICKERS:
new_table = new_table.iloc[:MAX_TICKERS]
msg = f"Reached max of {MAX_TICKERS}"
return new_table, msg
def lock_ticker_column(tb: pd.DataFrame):
if tb is None or len(tb) == 0:
return pd.DataFrame(columns=["ticker", "amount_usd"])
tickers = [str(x).upper() for x in tb["ticker"].tolist()]
amounts = pd.to_numeric(tb["amount_usd"], errors="coerce").fillna(0.0).tolist()
val = validate_tickers(tickers, years=DEFAULT_LOOKBACK_YEARS)
tickers = [t for t in tickers if t in val]
amounts = amounts[:len(tickers)] + [0.0] * max(0, len(tickers) - len(amounts))
return pd.DataFrame({"ticker": tickers, "amount_usd": amounts})
def set_horizon(years: float):
y = max(1.0, min(100.0, float(years)))
code = fred_series_for_horizon(y)
rf = fetch_fred_yield_annual(code)
global HORIZON_YEARS, RF_CODE, RF_ANN
HORIZON_YEARS = y
RF_CODE = code
RF_ANN = rf
return f"Risk-free series {code}. Latest annual rate {rf:.2%}. Computations will use this."
def _table_from_weights(weights: Dict[str, float], gross_amt: float) -> pd.DataFrame:
items = []
for t, w in weights.items():
pct = float(w)
amt = float(w) * gross_amt
items.append({"ticker": t, "weight_%": round(pct * 100.0, 2), "amount_$": round(amt, 2)})
df = pd.DataFrame(items, columns=SUG_COLS)
if df.empty:
return pd.DataFrame(columns=SUG_COLS)
df["absw"] = df["weight_%"].abs()
df = df.sort_values("absw", ascending=False).drop(columns=["absw"])
return df
def _weights_dict_from_row(r: pd.Series) -> Dict[str, float]:
ts = [t.strip().upper() for t in str(r.get("tickers","")).split(",") if t]
ws = []
for x in str(r.get("weights","")).split(","):
try:
ws.append(float(x))
except Exception:
ws.append(0.0)
wmap = {}
for i in range(min(len(ts), len(ws))):
wmap[ts[i]] = ws[i]
gross = sum(abs(v) for v in wmap.values())
if gross <= 1e-12:
return {}
return {k: v / gross for k, v in wmap.items()}
def compute(lookback_years: int,
table: Optional[pd.DataFrame],
risk_bucket: str,
horizon_years: float):
try:
# --- sanitize input table
if table is None or len(table) == 0:
empty = pd.DataFrame(columns=POS_COLS)
emptyS = pd.DataFrame(columns=SUG_COLS)
emptyE = pd.DataFrame(columns=EFF_COLS)
return (None, "Add at least one ticker", "", empty,
emptyS, emptyS, emptyS, emptyE, emptyE, "[]", 1, "No suggestions yet.")
df = table.copy().dropna(how="all")
if df.empty or "ticker" not in df.columns or "amount_usd" not in df.columns:
empty = pd.DataFrame(columns=POS_COLS)
emptyS = pd.DataFrame(columns=SUG_COLS)
emptyE = pd.DataFrame(columns=EFF_COLS)
return (None, "Positions table is empty or malformed.", "", empty,
emptyS, emptyS, emptyS, emptyE, emptyE, "[]", 1, "No suggestions yet.")
df["ticker"] = df["ticker"].astype(str).str.upper().str.strip()
df["amount_usd"] = pd.to_numeric(df["amount_usd"], errors="coerce").fillna(0.0)
symbols = [t for t in df["ticker"].tolist() if t]
symbols = validate_tickers(symbols, lookback_years)
if len(symbols) == 0:
empty = pd.DataFrame(columns=POS_COLS)
emptyS = pd.DataFrame(columns=SUG_COLS)
emptyE = pd.DataFrame(columns=EFF_COLS)
return (None, "Could not validate any tickers", "Universe invalid",
empty, emptyS, emptyS, emptyS, emptyE, emptyE, "[]", 1, "No suggestions.")
# --- universe & amounts
universe = sorted(set([s for s in symbols if s != MARKET_TICKER] + [MARKET_TICKER]))
df = df[df["ticker"].isin(symbols)].copy()
amounts = {r["ticker"]: float(r["amount_usd"]) for _, r in df.iterrows()}
gross_amt = sum(abs(v) for v in amounts.values())
if gross_amt <= 1e-9:
empty = pd.DataFrame(columns=POS_COLS)
emptyS = pd.DataFrame(columns=SUG_COLS)
emptyE = pd.DataFrame(columns=EFF_COLS)
return (None, "All amounts are zero", "Universe ok",
empty, emptyS, emptyS, emptyS, emptyE, emptyE, "[]", 1, "No suggestions.")
weights = {k: v / gross_amt for k, v in amounts.items()}
# --- risk free & moments
rf_code = fred_series_for_horizon(horizon_years)
rf_ann = fetch_fred_yield_annual(rf_code)
moms = estimate_all_moments_aligned(universe, lookback_years, rf_ann)
betas, covA, erp_ann, sigma_mkt = moms["betas"], moms["cov_ann"], moms["erp_ann"], moms["sigma_m_ann"]
# --- portfolio stats (CAPM return + historical sigma)
beta_p, er_capm_p, sigma_p = portfolio_stats(weights, covA, betas, rf_ann, erp_ann)
# --- efficient alternatives on CML
a_sigma, b_sigma, mu_eff_sigma = efficient_same_sigma(sigma_p, rf_ann, erp_ann, sigma_mkt)
a_mu, b_mu, sigma_eff_mu = efficient_same_return(er_capm_p, rf_ann, erp_ann, sigma_mkt)
eff_same_sigma_tbl = _table_from_weights({MARKET_TICKER: a_sigma, BILLS_TICKER: b_sigma}, gross_amt)
eff_same_mu_tbl = _table_from_weights({MARKET_TICKER: a_mu, BILLS_TICKER: b_mu}, gross_amt)
# --- build synthetic dataset (based ONLY on this universe)
synth = build_synth_dataset(universe, covA, betas, rf_ann, erp_ann, n_rows=N_SYNTH, seed=777)
if synth.empty:
# fall back to trivial 3 variants of (market/bills) if universe too thin
fallback = []
for a in [0.2, 0.5, 0.8]:
w = {MARKET_TICKER: a, BILLS_TICKER: 1-a}
beta_i, er_capm_i, sigma_i = portfolio_stats(w, pd.DataFrame(), {MARKET_TICKER:1.0}, rf_ann, erp_ann)
fallback.append({"tickers": ",".join(w.keys()),
"weights": ",".join(f"{v:.6f}" for v in w.values()),
"beta": beta_i, "er_capm": er_capm_i, "sigma": sigma_i})
synth = pd.DataFrame(fallback)
# --- risk buckets by sigma (absolute +/- 5% around median)
median_sigma = float(synth["sigma"].median())
low_max = max(float(synth["sigma"].min()), median_sigma - 0.05)
high_min = median_sigma + 0.05
if risk_bucket == "Low":
cand_df = synth[synth["sigma"] <= low_max].copy()
elif risk_bucket == "High":
cand_df = synth[synth["sigma"] >= high_min].copy()
else:
cand_df = synth[(synth["sigma"] > low_max) & (synth["sigma"] < high_min)].copy()
if len(cand_df) == 0:
cand_df = synth.copy()
# --- embeddings + MMR for 3 diverse picks
embed = get_embedder()
cand_sentences = cand_df.apply(row_to_sentence, axis=1).tolist()
cur_pairs = ", ".join([f"{k}:{v:+.2f}" for k, v in sorted(weights.items())])
q_sentence = f"user portfolio ({risk_bucket} risk); capm_target {er_capm_p:.4f}; sigma_hist {sigma_p:.4f}; exposures {cur_pairs}"
cand_embs = embed.encode(cand_sentences, convert_to_tensor=True, normalize_embeddings=True, batch_size=64, show_progress_bar=False)
q_emb = embed.encode([q_sentence], convert_to_tensor=True, normalize_embeddings=True)[0]
sims = st_util.cos_sim(q_emb, cand_embs)[0]
top_idx = sims.topk(k=min(MMR_K, len(cand_df))).indices.cpu().numpy().tolist()
shortlist_embs = cand_embs[top_idx]
mmr_local = mmr_select(q_emb, shortlist_embs, k=3, lambda_param=MMR_LAMBDA)
chosen = [top_idx[i] for i in mmr_local]
recs = cand_df.iloc[chosen].reset_index(drop=True)
# --- suggestion tables for 3 picks
sugg_tables = []
sugg_meta = []
for _, r in recs.iterrows():
wmap = _weights_dict_from_row(r)
sugg_tables.append(_table_from_weights(wmap, gross_amt))
sugg_meta.append({"er_capm": float(r["er_capm"]), "sigma": float(r["sigma"]), "beta": float(r["beta"])})
# --- plot
img = plot_cml(
rf_ann, erp_ann, sigma_mkt,
sigma_p, er_capm_p,
same_sigma_sigma=sigma_p, same_sigma_mu=mu_eff_sigma,
same_mu_sigma=sigma_eff_mu, same_mu_mu=er_capm_p
)
# --- positions table (computed)
rows = []
for t in universe:
if t == MARKET_TICKER:
continue
rows.append({
"ticker": t,
"amount_usd": round(amounts.get(t, 0.0), 2),
"weight_exposure": round(weights.get(t, 0.0), 6),
"beta": round(betas.get(t, np.nan), 4) if t != MARKET_TICKER else 1.0
})
pos_table = pd.DataFrame(rows, columns=POS_COLS)
# --- info summary
info_lines = []
info_lines.append("### Inputs")
info_lines.append(f"- Lookback years **{int(lookback_years)}**")
info_lines.append(f"- Horizon years **{int(round(horizon_years))}**")
info_lines.append(f"- Risk-free **{fmt_pct(rf_ann)}** from **{rf_code}**")
info_lines.append(f"- Market ERP **{fmt_pct(erp_ann)}**")
info_lines.append(f"- Market σ **{fmt_pct(sigma_mkt)}**")
info_lines.append("")
info_lines.append("### Your portfolio (plotted as CAPM return, historical σ)")
info_lines.append(f"- Beta **{beta_p:.2f}**")
info_lines.append(f"- σ (historical) **{fmt_pct(sigma_p)}**")
info_lines.append(f"- E[return] (CAPM / SML) **{fmt_pct(er_capm_p)}**")
info_lines.append("")
info_lines.append("### Efficient alternatives on CML")
info_lines.append(f"- Same σ → Market **{a_sigma:.2f}**, Bills **{b_sigma:.2f}**, Return **{fmt_pct(mu_eff_sigma)}**")
info_lines.append(f"- Same μ → Market **{a_mu:.2f}**, Bills **{b_mu:.2f}**, σ **{fmt_pct(sigma_eff_mu)}**")
info_lines.append("")
info_lines.append(f"### Dataset-based suggestions (risk: **{risk_bucket}**)")
info_lines.append("Use the selector to flip between **Pick #1 / #2 / #3**. Table shows % exposure and $ amounts.")
# pad to exactly 3 tables for outputs
while len(sugg_tables) < 3:
sugg_tables.append(pd.DataFrame(columns=SUG_COLS))
pick_idx_default = 1
pick_msg_default = (f"Pick #1 — E[μ] {fmt_pct(sugg_meta[0]['er_capm'])}, "
f"σ {fmt_pct(sugg_meta[0]['sigma'])}, β {sugg_meta[0]['beta']:.2f}") if sugg_meta else "No suggestion."
return (img,
"\n".join(info_lines),
f"Universe set to {', '.join(universe)}",
pos_table,
sugg_tables[0], sugg_tables[1], sugg_tables[2],
eff_same_sigma_tbl, eff_same_mu_tbl,
json.dumps(sugg_meta), pick_idx_default, pick_msg_default)
except Exception as e:
empty = pd.DataFrame(columns=POS_COLS)
emptyS = pd.DataFrame(columns=SUG_COLS)
emptyE = pd.DataFrame(columns=EFF_COLS)
msg = f"⚠️ Compute failed: {e}"
if DEBUG:
msg += "\n\n```\n" + traceback.format_exc() + "\n```"
return (None, msg, "Error", empty, emptyS, emptyS, emptyS, emptyE, emptyE, "[]", 1, "No suggestions.")
def on_pick_change(idx: int, meta_json: str):
try:
data = json.loads(meta_json)
except Exception:
data = []
if not data:
return "No suggestion."
i = int(idx) - 1
i = max(0, min(i, len(data)-1))
s = data[i]
return f"Pick #{i+1} — E[μ] {fmt_pct(s['er_capm'])}, σ {fmt_pct(s['sigma'])}, β {s['beta']:.2f}"
# =========================
# UI
# =========================
with gr.Blocks(title="Efficient Portfolio Advisor", css="#small-note {font-size: 12px; color:#666;}") as demo:
gr.Markdown("## Efficient Portfolio Advisor\n"
"Search symbols, enter **$ amounts**, set your **horizon**. "
"The plot shows your **CAPM expected return** vs **historical σ**, alongside the **CML**. "
"Recommendations are generated from a **synthetic dataset (1000 portfolios)** and ranked with **local embeddings (BGE-base)** for relevance + diversity.")
with gr.Tab("Build Portfolio"):
with gr.Row():
with gr.Column(scale=1):
q = gr.Textbox(label="Search symbol")
search_note = gr.Markdown(elem_id="small-note")
matches = gr.Dropdown(choices=[], label="Matches", value=None)
search_btn = gr.Button("Search")
add_btn = gr.Button("Add selected to portfolio")
gr.Markdown("### Positions (enter dollars; negatives allowed for shorts)")
table = gr.Dataframe(
headers=["ticker", "amount_usd"],
datatype=["str", "number"],
row_count=0,
col_count=(2, "fixed"),
wrap=True
)
with gr.Column(scale=1):
horizon = gr.Slider(1, 30, value=DEFAULT_LOOKBACK_YEARS, step=1, label="Investment horizon (years)")
lookback = gr.Slider(1, 10, value=DEFAULT_LOOKBACK_YEARS, step=1, label="Lookback (years) for β and σ")
risk_bucket = gr.Radio(["Low", "Medium", "High"], value="Medium", label="Recommendation risk level")
run_btn = gr.Button("Compute")
rf_msg = gr.Textbox(label="Risk-free source / status", interactive=False)
search_btn.click(fn=do_search, inputs=q, outputs=[search_note, matches])
add_btn.click(fn=add_symbol, inputs=[matches, table], outputs=[table, search_note])
table.change(fn=lock_ticker_column, inputs=table, outputs=table)
horizon.change(fn=set_horizon, inputs=horizon, outputs=[rf_msg]) # FIX: single output
with gr.Tab("Results"):
with gr.Row():
with gr.Column(scale=1):
plot = gr.Image(label="Capital Market Line", type="pil")
summary = gr.Markdown(label="Summary")
universe_msg = gr.Textbox(label="Universe status", interactive=False)
with gr.Column(scale=1):
positions = gr.Dataframe(
label="Computed positions",
headers=POS_COLS,
datatype=["str", "number", "number", "number"],
col_count=(len(POS_COLS), "fixed"),
interactive=False
)
gr.Markdown("### Recommendations (always from embeddings)")
with gr.Row():
sugg1 = gr.Dataframe(label="Pick #1", interactive=False)
sugg2 = gr.Dataframe(label="Pick #2", interactive=False)
sugg3 = gr.Dataframe(label="Pick #3", interactive=False)
with gr.Row():
pick_idx = gr.Slider(1, 3, value=1, step=1, label="Carousel: show Pick #")
pick_meta = gr.Textbox(value="[]", visible=False)
pick_msg = gr.Markdown("")
gr.Markdown("### Efficient alternatives on the CML")
eff_same_sigma_tbl = gr.Dataframe(label="Efficient: Same σ", interactive=False)
eff_same_mu_tbl = gr.Dataframe(label="Efficient: Same μ", interactive=False)
run_btn.click(
fn=compute,
inputs=[lookback, table, risk_bucket, horizon],
outputs=[
plot, summary, universe_msg, positions,
sugg1, sugg2, sugg3,
eff_same_sigma_tbl, eff_same_mu_tbl,
pick_meta, pick_idx, pick_msg
]
)
pick_idx.change(fn=on_pick_change, inputs=[pick_idx, pick_meta], outputs=pick_msg)
with gr.Tab("About"):
gr.Markdown(
"### Modality & Model\n"
"- **Modality**: Text (portfolio → text descriptions) powering **embeddings**\n"
"- **Embedding model**: `BAAI/bge-base-en-v1.5` (local, downloaded once; no API)\n\n"
"### Use case\n"
"Given a portfolio, we build a synthetic dataset of 1,000 alternative mixes **using the same tickers**, "
"compute each mix’s **CAPM return, σ, and β**, and rank candidates with embeddings to return **3 diverse, relevant suggestions** "
"for **Low / Medium / High** risk.\n\n"
"### Theory links\n"
"- Portfolio expected return in the plot uses **CAPM (SML)**, while σ is historical.\n"
"- The **CML** and the two **efficient alternatives** (same σ, same μ) use a mix of **Market (VOO)** and **Bills**."
)
if __name__ == "__main__":
demo.launch()