Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import tempfile
|
| 3 |
+
import json
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import plotly.express as px
|
| 9 |
+
import plotly.graph_objects as go
|
| 10 |
+
from sqlalchemy import create_engine
|
| 11 |
+
from pandasai import SmartDataframe
|
| 12 |
+
from pandasai.llm import OpenAI
|
| 13 |
+
import sqlite3
|
| 14 |
+
from dotenv import load_dotenv
|
| 15 |
+
import atexit
|
| 16 |
+
import base64
|
| 17 |
+
import io
|
| 18 |
+
|
| 19 |
+
load_dotenv()
|
| 20 |
+
|
| 21 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 22 |
+
|
| 23 |
+
app_instance = None
|
| 24 |
+
|
| 25 |
+
class DataChatApp:
|
| 26 |
+
def __init__(self):
|
| 27 |
+
self.df = None
|
| 28 |
+
self.data_source = None
|
| 29 |
+
self.llm = OpenAI(api_token=OPENAI_API_KEY)
|
| 30 |
+
self.smart_df = None
|
| 31 |
+
self.chat_history = []
|
| 32 |
+
self.temp_files = []
|
| 33 |
+
self.db_connection = None
|
| 34 |
+
global app_instance
|
| 35 |
+
app_instance = self
|
| 36 |
+
|
| 37 |
+
def load_file(self, file):
|
| 38 |
+
"""Load data from uploaded file"""
|
| 39 |
+
if file is None:
|
| 40 |
+
return "No file uploaded", None, None
|
| 41 |
+
|
| 42 |
+
file_path = file.name
|
| 43 |
+
file_name = os.path.basename(file_path)
|
| 44 |
+
file_ext = os.path.splitext(file_name)[1].lower()
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
if file_ext == '.csv':
|
| 48 |
+
self.df = pd.read_csv(file_path)
|
| 49 |
+
elif file_ext == '.xlsx' or file_ext == '.xls':
|
| 50 |
+
self.df = pd.read_excel(file_path)
|
| 51 |
+
elif file_ext == '.json':
|
| 52 |
+
self.df = pd.read_json(file_path)
|
| 53 |
+
else:
|
| 54 |
+
return f"Unsupported file format: {file_ext}", None, None
|
| 55 |
+
|
| 56 |
+
# Initialize the SmartDataframe
|
| 57 |
+
self.smart_df = SmartDataframe(self.df, config={"llm": self.llm})
|
| 58 |
+
self.data_source = f"File: {file_name}"
|
| 59 |
+
preview = self.df.head().to_html()
|
| 60 |
+
info = self._get_dataframe_info()
|
| 61 |
+
return f"Loaded successfully: {file_name}", preview, info
|
| 62 |
+
except Exception as e:
|
| 63 |
+
return f"Error loading file: {str(e)}", None, None
|
| 64 |
+
|
| 65 |
+
return self.df
|
| 66 |
+
|
| 67 |
+
def connect_database(self, connection_string, query):
|
| 68 |
+
"""Connect to database using connection string"""
|
| 69 |
+
try:
|
| 70 |
+
if connection_string.startswith('sqlite:'):
|
| 71 |
+
if 'memory' in connection_string:
|
| 72 |
+
self.db_connection = sqlite3.connect(':memory:')
|
| 73 |
+
else:
|
| 74 |
+
db_path = connection_string.replace('sqlite:///', '')
|
| 75 |
+
self.db_connection = sqlite3.connect(db_path)
|
| 76 |
+
else:
|
| 77 |
+
self.db_connection = create_engine(connection_string)
|
| 78 |
+
|
| 79 |
+
if not query:
|
| 80 |
+
return "Please provide a SQL query", None, None
|
| 81 |
+
|
| 82 |
+
self.df = pd.read_sql(query, self.db_connection)
|
| 83 |
+
self.smart_df = SmartDataframe(self.df, config={"llm": self.llm})
|
| 84 |
+
self.data_source = f"Database: {connection_string.split('://')[0]}"
|
| 85 |
+
preview = self.df.head().to_html()
|
| 86 |
+
info = self._get_dataframe_info()
|
| 87 |
+
return "Database connected successfully", preview, info
|
| 88 |
+
except Exception as e:
|
| 89 |
+
return f"Database connection error: {str(e)}", None, None
|
| 90 |
+
|
| 91 |
+
return self.df
|
| 92 |
+
|
| 93 |
+
def _get_dataframe_info(self):
|
| 94 |
+
"""Get information about the dataframe"""
|
| 95 |
+
if self.df is None:
|
| 96 |
+
return None
|
| 97 |
+
|
| 98 |
+
info = {
|
| 99 |
+
"Shape": self.df.shape,
|
| 100 |
+
"Columns": list(self.df.columns),
|
| 101 |
+
"Data Types": {col: str(dtype) for col, dtype in self.df.dtypes.items()},
|
| 102 |
+
"Missing Values": self.df.isnull().sum().to_dict()
|
| 103 |
+
}
|
| 104 |
+
return json.dumps(info, indent=2)
|
| 105 |
+
|
| 106 |
+
def chat_with_data(self, query, history):
|
| 107 |
+
"""Process natural language query against the loaded data"""
|
| 108 |
+
if self.df is None or self.smart_df is None:
|
| 109 |
+
return "Please load data first before querying.", history
|
| 110 |
+
|
| 111 |
+
if not query:
|
| 112 |
+
return "Please enter a query.", history
|
| 113 |
+
|
| 114 |
+
try:
|
| 115 |
+
if history is None:
|
| 116 |
+
history = []
|
| 117 |
+
|
| 118 |
+
response = self.smart_df.chat(query)
|
| 119 |
+
|
| 120 |
+
if isinstance(response, plt.Figure):
|
| 121 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
|
| 122 |
+
response.savefig(temp_file.name)
|
| 123 |
+
temp_file.close()
|
| 124 |
+
self.temp_files.append(temp_file.name)
|
| 125 |
+
|
| 126 |
+
response_text = f"<img src='file={temp_file.name}' alt='Visualization' />"
|
| 127 |
+
|
| 128 |
+
elif isinstance(response, pd.DataFrame):
|
| 129 |
+
response_text = f"<div style='overflow-x: auto;'>{response.to_html(index=False)}</div>"
|
| 130 |
+
else:
|
| 131 |
+
response_text = str(response)
|
| 132 |
+
|
| 133 |
+
history.append({"role": "user", "content": query})
|
| 134 |
+
history.append({"role": "assistant", "content": response_text})
|
| 135 |
+
|
| 136 |
+
return "", history
|
| 137 |
+
except Exception as e:
|
| 138 |
+
if not history:
|
| 139 |
+
history = []
|
| 140 |
+
history.append({"role": "user", "content": query})
|
| 141 |
+
history.append({"role": "assistant", "content": f"Error processing query: {str(e)}"})
|
| 142 |
+
return "", history
|
| 143 |
+
|
| 144 |
+
def create_visualization(self, viz_type, x_axis, y_axis, title):
|
| 145 |
+
"""Create visualization based on user selection"""
|
| 146 |
+
if self.df is None:
|
| 147 |
+
return "Please load data first before creating visualizations."
|
| 148 |
+
|
| 149 |
+
if not x_axis or (viz_type != 'pie' and viz_type != 'histogram' and not y_axis):
|
| 150 |
+
return "Please select both X and Y axis for the visualization."
|
| 151 |
+
|
| 152 |
+
try:
|
| 153 |
+
if x_axis not in self.df.columns:
|
| 154 |
+
return f"Column '{x_axis}' not found in the data."
|
| 155 |
+
|
| 156 |
+
if viz_type != 'pie' and viz_type != 'histogram' and y_axis not in self.df.columns:
|
| 157 |
+
return f"Column '{y_axis}' not found in the data."
|
| 158 |
+
|
| 159 |
+
plt.figure(figsize=(10, 6))
|
| 160 |
+
|
| 161 |
+
if viz_type == 'bar':
|
| 162 |
+
plt.bar(self.df[x_axis], self.df[y_axis])
|
| 163 |
+
plt.xlabel(x_axis)
|
| 164 |
+
plt.ylabel(y_axis)
|
| 165 |
+
plt.title(title or f"Bar Chart: {y_axis} by {x_axis}")
|
| 166 |
+
|
| 167 |
+
elif viz_type == 'line':
|
| 168 |
+
plt.plot(self.df[x_axis], self.df[y_axis])
|
| 169 |
+
plt.xlabel(x_axis)
|
| 170 |
+
plt.ylabel(y_axis)
|
| 171 |
+
plt.title(title or f"Line Chart: {y_axis} over {x_axis}")
|
| 172 |
+
|
| 173 |
+
elif viz_type == 'scatter':
|
| 174 |
+
plt.scatter(self.df[x_axis], self.df[y_axis])
|
| 175 |
+
plt.xlabel(x_axis)
|
| 176 |
+
plt.ylabel(y_axis)
|
| 177 |
+
plt.title(title or f"Scatter Plot: {y_axis} vs {x_axis}")
|
| 178 |
+
|
| 179 |
+
elif viz_type == 'pie':
|
| 180 |
+
if y_axis and y_axis in self.df.columns:
|
| 181 |
+
pie_data = self.df.groupby(x_axis)[y_axis].sum()
|
| 182 |
+
plt.pie(pie_data, labels=pie_data.index, autopct='%1.1f%%')
|
| 183 |
+
else:
|
| 184 |
+
counts = self.df[x_axis].value_counts()
|
| 185 |
+
plt.pie(counts, labels=counts.index, autopct='%1.1f%%')
|
| 186 |
+
plt.title(title or f"Pie Chart: Distribution of {x_axis}")
|
| 187 |
+
|
| 188 |
+
elif viz_type == 'histogram':
|
| 189 |
+
plt.hist(self.df[x_axis], bins=20)
|
| 190 |
+
plt.xlabel(x_axis)
|
| 191 |
+
plt.ylabel('Frequency')
|
| 192 |
+
plt.title(title or f"Histogram: Distribution of {x_axis}")
|
| 193 |
+
|
| 194 |
+
plt.tight_layout()
|
| 195 |
+
|
| 196 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
|
| 197 |
+
plt.savefig(temp_file.name, dpi=100, bbox_inches='tight')
|
| 198 |
+
temp_file.close()
|
| 199 |
+
self.temp_files.append(temp_file.name)
|
| 200 |
+
|
| 201 |
+
with open(temp_file.name, 'rb') as img_file:
|
| 202 |
+
img_data = base64.b64encode(img_file.read()).decode('utf-8')
|
| 203 |
+
|
| 204 |
+
html_content = f"""
|
| 205 |
+
<div style="text-align: center; padding: 20px; background-color: white; border-radius: 10px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);">
|
| 206 |
+
<img src="data:image/png;base64,{img_data}" style="max-width: 100%; height: auto;" alt="Visualization">
|
| 207 |
+
</div>
|
| 208 |
+
"""
|
| 209 |
+
|
| 210 |
+
plt.close()
|
| 211 |
+
|
| 212 |
+
return html_content
|
| 213 |
+
|
| 214 |
+
except Exception as e:
|
| 215 |
+
plt.close()
|
| 216 |
+
return f"Error creating visualization: {str(e)}"
|
| 217 |
+
|
| 218 |
+
def generate_summary_cards(self):
|
| 219 |
+
"""Generate summary cards (KPIs) for numerical columns"""
|
| 220 |
+
if self.df is None:
|
| 221 |
+
return "Please load data first before generating summary cards."
|
| 222 |
+
|
| 223 |
+
try:
|
| 224 |
+
num_cols = self.df.select_dtypes(include=[np.number]).columns.tolist()
|
| 225 |
+
|
| 226 |
+
if not num_cols:
|
| 227 |
+
return "No numerical columns found for summary cards."
|
| 228 |
+
|
| 229 |
+
cards_html = """
|
| 230 |
+
<style>
|
| 231 |
+
.summary-card {
|
| 232 |
+
background-color: #f5f5f5;
|
| 233 |
+
border-radius: 5px;
|
| 234 |
+
padding: 15px;
|
| 235 |
+
min-width: 200px;
|
| 236 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 237 |
+
margin: 10px;
|
| 238 |
+
}
|
| 239 |
+
.summary-card h3 {
|
| 240 |
+
margin-top: 0;
|
| 241 |
+
color: #333 !important;
|
| 242 |
+
font-weight: bold;
|
| 243 |
+
}
|
| 244 |
+
.summary-card p {
|
| 245 |
+
color: #333 !important;
|
| 246 |
+
margin: 8px 0;
|
| 247 |
+
}
|
| 248 |
+
.summary-card strong {
|
| 249 |
+
font-weight: bold;
|
| 250 |
+
color: #333 !important;
|
| 251 |
+
}
|
| 252 |
+
.summary-container {
|
| 253 |
+
display: flex;
|
| 254 |
+
flex-wrap: wrap;
|
| 255 |
+
gap: 10px;
|
| 256 |
+
}
|
| 257 |
+
</style>
|
| 258 |
+
<div class="summary-container">
|
| 259 |
+
"""
|
| 260 |
+
|
| 261 |
+
for col in num_cols:
|
| 262 |
+
mean_val = self.df[col].mean()
|
| 263 |
+
median_val = self.df[col].median()
|
| 264 |
+
min_val = self.df[col].min()
|
| 265 |
+
max_val = self.df[col].max()
|
| 266 |
+
|
| 267 |
+
card_html = f"""
|
| 268 |
+
<div class="summary-card">
|
| 269 |
+
<h3>{col}</h3>
|
| 270 |
+
<p><strong>Mean:</strong> {mean_val:.2f}</p>
|
| 271 |
+
<p><strong>Median:</strong> {median_val:.2f}</p>
|
| 272 |
+
<p><strong>Min:</strong> {min_val:.2f}</p>
|
| 273 |
+
<p><strong>Max:</strong> {max_val:.2f}</p>
|
| 274 |
+
</div>
|
| 275 |
+
"""
|
| 276 |
+
cards_html += card_html
|
| 277 |
+
|
| 278 |
+
cards_html += "</div>"
|
| 279 |
+
return cards_html
|
| 280 |
+
|
| 281 |
+
except Exception as e:
|
| 282 |
+
return f"Error generating summary cards: {str(e)}"
|
| 283 |
+
|
| 284 |
+
def cleanup(self):
|
| 285 |
+
"""Clean up temporary files"""
|
| 286 |
+
for file in self.temp_files:
|
| 287 |
+
try:
|
| 288 |
+
if os.path.exists(file):
|
| 289 |
+
os.unlink(file)
|
| 290 |
+
except Exception:
|
| 291 |
+
pass
|
| 292 |
+
|
| 293 |
+
if self.db_connection is not None:
|
| 294 |
+
try:
|
| 295 |
+
if hasattr(self.db_connection, 'close'):
|
| 296 |
+
self.db_connection.close()
|
| 297 |
+
elif hasattr(self.db_connection, 'dispose'):
|
| 298 |
+
self.db_connection.dispose()
|
| 299 |
+
except Exception:
|
| 300 |
+
pass
|
| 301 |
+
|
| 302 |
+
def create_interface():
|
| 303 |
+
app = DataChatApp()
|
| 304 |
+
|
| 305 |
+
def update_column_options():
|
| 306 |
+
if app_instance and app_instance.df is not None:
|
| 307 |
+
return gr.update(choices=list(app_instance.df.columns))
|
| 308 |
+
return gr.update(choices=[])
|
| 309 |
+
|
| 310 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Data Chat App", css="""
|
| 311 |
+
.plot-container {width: 100% !important; height: 100% !important;}
|
| 312 |
+
.js-plotly-plot {min-height: 500px;}
|
| 313 |
+
.plotly {min-height: 500px;}
|
| 314 |
+
""") as interface:
|
| 315 |
+
gr.Markdown("""
|
| 316 |
+
# GIN Data Chat Application
|
| 317 |
+
Upload your data file or connect to a database, then chat with your data using natural language!
|
| 318 |
+
""")
|
| 319 |
+
|
| 320 |
+
with gr.Tabs():
|
| 321 |
+
with gr.TabItem("Load Data"):
|
| 322 |
+
with gr.Tab("File Upload"):
|
| 323 |
+
file_input = gr.File(label="Upload CSV, Excel, or JSON file")
|
| 324 |
+
file_upload_button = gr.Button("Load File")
|
| 325 |
+
file_result = gr.Textbox(label="Result")
|
| 326 |
+
|
| 327 |
+
with gr.Tab("Database Connection"):
|
| 328 |
+
conn_str = gr.Textbox(
|
| 329 |
+
label="Connection String",
|
| 330 |
+
placeholder="E.g., sqlite:///data.db, postgresql://user:pass@localhost/db"
|
| 331 |
+
)
|
| 332 |
+
query = gr.Textbox(
|
| 333 |
+
label="SQL Query",
|
| 334 |
+
placeholder="SELECT * FROM your_table LIMIT 1000"
|
| 335 |
+
)
|
| 336 |
+
db_connect_button = gr.Button("Connect to Database")
|
| 337 |
+
db_result = gr.Textbox(label="Result")
|
| 338 |
+
|
| 339 |
+
preview = gr.HTML(label="Data Preview")
|
| 340 |
+
info = gr.JSON(label="Data Information")
|
| 341 |
+
|
| 342 |
+
with gr.TabItem("Chat with Data"):
|
| 343 |
+
chat_interface = gr.Chatbot(height=400, type="messages")
|
| 344 |
+
query_input = gr.Textbox(
|
| 345 |
+
label="Ask a question about your data",
|
| 346 |
+
placeholder="E.g., Show me the trend of sales over time",
|
| 347 |
+
lines=2
|
| 348 |
+
)
|
| 349 |
+
chat_button = gr.Button("Ask")
|
| 350 |
+
|
| 351 |
+
with gr.TabItem("Visualize Data"):
|
| 352 |
+
with gr.Row():
|
| 353 |
+
with gr.Column(scale=1):
|
| 354 |
+
viz_type = gr.Dropdown(
|
| 355 |
+
choices=["bar", "line", "scatter", "pie", "histogram"],
|
| 356 |
+
label="Visualization Type",
|
| 357 |
+
value="bar" # Set a default value
|
| 358 |
+
)
|
| 359 |
+
x_axis = gr.Dropdown(label="X-Axis / Category")
|
| 360 |
+
y_axis = gr.Dropdown(label="Y-Axis / Values (Optional for Pie & Histogram)")
|
| 361 |
+
viz_title = gr.Textbox(label="Chart Title (Optional)")
|
| 362 |
+
viz_button = gr.Button("Generate Visualization", variant="primary")
|
| 363 |
+
|
| 364 |
+
with gr.Column(scale=2):
|
| 365 |
+
viz_output = gr.HTML(label="Visualization", value="<div style='width:100%; height:500px; display:flex; justify-content:center; align-items:center; color:#666; font-size:16px;'>Your visualization will appear here</div>")
|
| 366 |
+
|
| 367 |
+
with gr.TabItem("Summary Stats"):
|
| 368 |
+
summary_button = gr.Button("Generate Summary Cards")
|
| 369 |
+
summary_output = gr.HTML(label="Summary Statistics")
|
| 370 |
+
|
| 371 |
+
# Set up event handlers
|
| 372 |
+
file_upload_button.click(
|
| 373 |
+
app.load_file,
|
| 374 |
+
inputs=[file_input],
|
| 375 |
+
outputs=[file_result, preview, info]
|
| 376 |
+
).then(
|
| 377 |
+
update_column_options,
|
| 378 |
+
inputs=None,
|
| 379 |
+
outputs=[x_axis]
|
| 380 |
+
).then(
|
| 381 |
+
update_column_options,
|
| 382 |
+
inputs=None,
|
| 383 |
+
outputs=[y_axis]
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
db_connect_button.click(
|
| 387 |
+
app.connect_database,
|
| 388 |
+
inputs=[conn_str, query],
|
| 389 |
+
outputs=[db_result, preview, info]
|
| 390 |
+
).then(
|
| 391 |
+
update_column_options,
|
| 392 |
+
inputs=None,
|
| 393 |
+
outputs=[x_axis]
|
| 394 |
+
).then(
|
| 395 |
+
update_column_options,
|
| 396 |
+
inputs=None,
|
| 397 |
+
outputs=[y_axis]
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
chat_button.click(
|
| 401 |
+
app.chat_with_data,
|
| 402 |
+
inputs=[query_input, chat_interface],
|
| 403 |
+
outputs=[query_input, chat_interface]
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
query_input.submit(
|
| 407 |
+
app.chat_with_data,
|
| 408 |
+
inputs=[query_input, chat_interface],
|
| 409 |
+
outputs=[query_input, chat_interface]
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
viz_button.click(
|
| 414 |
+
app.create_visualization,
|
| 415 |
+
inputs=[viz_type, x_axis, y_axis, viz_title],
|
| 416 |
+
outputs=[viz_output]
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
summary_button.click(
|
| 420 |
+
app.generate_summary_cards,
|
| 421 |
+
outputs=[summary_output]
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
# Register cleanup function for when the app closes
|
| 425 |
+
# The on_close method is no longer available in newer Gradio versions
|
| 426 |
+
# Instead, we'll clean up temp files when the server restarts
|
| 427 |
+
app.cleanup() # Clean up any previous temp files
|
| 428 |
+
|
| 429 |
+
return interface
|
| 430 |
+
|
| 431 |
+
if __name__ == "__main__":
|
| 432 |
+
import atexit
|
| 433 |
+
app = DataChatApp()
|
| 434 |
+
atexit.register(app.cleanup)
|
| 435 |
+
|
| 436 |
+
interface = create_interface()
|
| 437 |
+
interface.launch(share=True)
|