File size: 9,288 Bytes
2b67076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import cv2
import requests
import torch
import numpy as np
import PIL.Image as Image
import PIL.ImageOps
# from insightface.app import FaceAnalysis
# from facexlib.parsing import init_parsing_model
from torchvision.transforms.functional import normalize
from typing import Union, Optional
from models.hyvideo.data_kits.face_align import AlignImage
from shared.utils import files_locator as fl 


def _img2tensor(img: np.ndarray, bgr2rgb: bool = True) -> torch.Tensor:
    if bgr2rgb:
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img = img.astype(np.float32) / 255.0
    img = np.transpose(img, (2, 0, 1))
    return torch.from_numpy(img)


def _pad_to_square(img: np.ndarray, pad_color: int = 255) -> np.ndarray:
    h, w, _ = img.shape
    if h == w:
        return img

    if h > w:
        pad_size = (h - w) // 2
        padded_img = cv2.copyMakeBorder(
            img,
            0,
            0,
            pad_size,
            h - w - pad_size,
            cv2.BORDER_CONSTANT,
            value=[pad_color] * 3,
        )
    else:
        pad_size = (w - h) // 2
        padded_img = cv2.copyMakeBorder(
            img,
            pad_size,
            w - h - pad_size,
            0,
            0,
            cv2.BORDER_CONSTANT,
            value=[pad_color] * 3,
        )

    return padded_img


class FaceProcessor:
    def __init__(self):
        self.align_instance = AlignImage("cuda", det_path= fl.locate_file("det_align/detface.pt"))
        self.align_instance.facedet.model.to("cpu")


    def process(
        self,
        image: Union[str, PIL.Image.Image],
        resize_to: int = 512,
        border_thresh: int = 10,
        face_crop_scale: float = 1.5,
        remove_bg= False,
        # area=1.25
    ) -> PIL.Image.Image:

        image_pil = PIL.ImageOps.exif_transpose(image).convert("RGB")
        w, h = image_pil.size
        self.align_instance.facedet.model.to("cuda")        
        _, _, bboxes_list = self.align_instance(np.array(image_pil)[:,:,[2,1,0]], maxface=True)
        self.align_instance.facedet.model.to("cpu")        

        try:
            bboxSrc = bboxes_list[0]
        except:
            bboxSrc = [0, 0, w, h]
        x1, y1, ww, hh = bboxSrc
        x2, y2 = x1 + ww, y1 + hh
        # ww, hh = (x2-x1) * area, (y2-y1) * area
        # center = [(x2+x1)//2, (y2+y1)//2]
        # x1 = max(center[0] - ww//2, 0)
        # y1 = max(center[1] - hh//2, 0)
        # x2 = min(center[0] + ww//2, w)
        # y2 = min(center[1] + hh//2, h)
  
        frame = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
        h, w, _ = frame.shape
        image_to_process = None

        is_close_to_border = (
            x1 <= border_thresh
            and y1 <= border_thresh
            and x2 >= w - border_thresh
            and y2 >= h - border_thresh
        )

        if is_close_to_border:
            # print(
            #     "[Info] Face is close to border, padding original image to square."
            # )
            image_to_process = _pad_to_square(frame, pad_color=255)
        else:
            cx, cy = (x1 + x2) // 2, (y1 + y2) // 2
            side = int(max(x2 - x1, y2 - y1) * face_crop_scale)
            half = side // 2

            left = int(max(cx - half, 0))
            top = int(max(cy - half, 0))
            right = int(min(cx + half, w))
            bottom = int(min(cy + half, h))

            cropped_face = frame[top:bottom, left:right]
            image_to_process = _pad_to_square(cropped_face, pad_color=255)

        image_resized = cv2.resize(
            image_to_process, (resize_to, resize_to), interpolation=cv2.INTER_LANCZOS4 # .INTER_AREA
        )

        face_tensor = _img2tensor(image_resized).to("cpu")

        from shared.utils.utils import remove_background, convert_tensor_to_image
        if remove_bg:
            face_tensor = remove_background(face_tensor)
        img_out = Image.fromarray(face_tensor.clone().mul_(255).permute(1,2,0).to(torch.uint8).cpu().numpy())
        return img_out


# class FaceProcessor2:
#     def __init__(self, antelopv2_path=".", device: Optional[torch.device] = None):
#         if device is None:
#             self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#         else:
#             self.device = device

#         providers = (
#             ["CUDAExecutionProvider"]
#             if self.device.type == "cuda"
#             else ["CPUExecutionProvider"]
#         )
#         self.app = FaceAnalysis(
#             name="antelopev2", root=antelopv2_path, providers=providers
#         )
#         self.app.prepare(ctx_id=0, det_size=(640, 640))

#         self.parsing_model = init_parsing_model(
#             model_name="bisenet", device=self.device
#         )
#         self.parsing_model.eval()

#         print("FaceProcessor initialized successfully.")

#     def process(
#         self,
#         image: Union[str, PIL.Image.Image],
#         resize_to: int = 512,
#         border_thresh: int = 10,
#         face_crop_scale: float = 1.5,
#         extra_input: bool = False,
#     ) -> PIL.Image.Image:
#         if isinstance(image, str):
#             if image.startswith("http://") or image.startswith("https://"):
#                 image = PIL.Image.open(requests.get(image, stream=True, timeout=10).raw)
#             elif os.path.isfile(image):
#                 image = PIL.Image.open(image)
#             else:
#                 raise ValueError(
#                     f"Input string is not a valid URL or file path: {image}"
#                 )
#         elif not isinstance(image, PIL.Image.Image):
#             raise TypeError(
#                 "Input must be a file path, a URL, or a PIL.Image.Image object."
#             )

#         image = PIL.ImageOps.exif_transpose(image).convert("RGB")

#         frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)

#         faces = self.app.get(frame)
#         h, w, _ = frame.shape
#         image_to_process = None

#         if not faces:
#             print(
#                 "[Warning] No face detected. Using the whole image, padded to square."
#             )
#             image_to_process = _pad_to_square(frame, pad_color=255)
#         else:
#             largest_face = max(
#                 faces, key=lambda f: (f.bbox[2] - f.bbox[0]) * (f.bbox[3] - f.bbox[1])
#             )
#             x1, y1, x2, y2 = map(int, largest_face.bbox)

#             is_close_to_border = (
#                 x1 <= border_thresh
#                 and y1 <= border_thresh
#                 and x2 >= w - border_thresh
#                 and y2 >= h - border_thresh
#             )

#             if is_close_to_border:
#                 print(
#                     "[Info] Face is close to border, padding original image to square."
#                 )
#                 image_to_process = _pad_to_square(frame, pad_color=255)
#             else:
#                 cx, cy = (x1 + x2) // 2, (y1 + y2) // 2
#                 side = int(max(x2 - x1, y2 - y1) * face_crop_scale)
#                 half = side // 2

#                 left = max(cx - half, 0)
#                 top = max(cy - half, 0)
#                 right = min(cx + half, w)
#                 bottom = min(cy + half, h)

#                 cropped_face = frame[top:bottom, left:right]
#                 image_to_process = _pad_to_square(cropped_face, pad_color=255)

#         image_resized = cv2.resize(
#             image_to_process, (resize_to, resize_to), interpolation=cv2.INTER_AREA
#         )

#         face_tensor = (
#             _img2tensor(image_resized, bgr2rgb=True).unsqueeze(0).to(self.device)
#         )
#         with torch.no_grad():
#             normalized_face = normalize(face_tensor, [0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
#             parsing_out = self.parsing_model(normalized_face)[0]
#             parsing_mask = parsing_out.argmax(dim=1, keepdim=True)

#         background_mask_np = (parsing_mask.squeeze().cpu().numpy() == 0).astype(
#             np.uint8
#         )
#         white_background = np.ones_like(image_resized, dtype=np.uint8) * 255
#         mask_3channel = cv2.cvtColor(background_mask_np * 255, cv2.COLOR_GRAY2BGR)
#         result_img_bgr = np.where(mask_3channel == 255, white_background, image_resized)
#         result_img_rgb = cv2.cvtColor(result_img_bgr, cv2.COLOR_BGR2RGB)
#         img_white_bg = PIL.Image.fromarray(result_img_rgb)
#         if extra_input:
#             # 2. Create image with transparent background (new logic)
#             # Create an alpha channel: 255 for foreground (not background), 0 for background
#             alpha_channel = (parsing_mask.squeeze().cpu().numpy() != 0).astype(
#                 np.uint8
#             ) * 255

#             # Convert the resized BGR image to RGB
#             image_resized_rgb = cv2.cvtColor(image_resized, cv2.COLOR_BGR2RGB)

#             # Stack RGB channels with the new alpha channel
#             rgba_image = np.dstack((image_resized_rgb, alpha_channel))

#             # Create PIL image from the RGBA numpy array
#             img_transparent_bg = PIL.Image.fromarray(rgba_image, "RGBA")

#             return img_white_bg, img_transparent_bg
#         else:
#             return img_white_bg