File size: 19,874 Bytes
2b67076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import argparse
import os
import os.path as osp
import torchvision.transforms.functional as TF
import torch.nn.functional as F
import cv2
import tempfile
import imageio
import torch
import decord
from PIL import Image
import numpy as np
from rembg import remove, new_session
import random
import ffmpeg
import os
import tempfile
import subprocess
import json
from functools import lru_cache
os.environ["U2NET_HOME"] = os.path.join(os.getcwd(), "ckpts", "rembg")


from PIL import Image
video_info_cache = []
def seed_everything(seed: int):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
    if torch.backends.mps.is_available():
        torch.mps.manual_seed(seed)

def has_video_file_extension(filename):
    extension = os.path.splitext(filename)[-1].lower()
    return extension in [".mp4"]

def has_image_file_extension(filename):
    extension = os.path.splitext(filename)[-1].lower()
    return extension in [".png", ".jpg", ".jpeg", ".bmp", ".gif", ".webp", ".tif", ".tiff", ".jfif", ".pjpeg"]

def resample(video_fps, video_frames_count, max_target_frames_count, target_fps, start_target_frame ):
    import math

    video_frame_duration = 1 /video_fps
    target_frame_duration = 1 / target_fps 
    
    target_time = start_target_frame * target_frame_duration
    frame_no = math.ceil(target_time / video_frame_duration)  
    cur_time = frame_no * video_frame_duration
    frame_ids =[]
    while True:
        if max_target_frames_count != 0 and len(frame_ids) >= max_target_frames_count :
            break
        diff = round( (target_time -cur_time) / video_frame_duration , 5)
        add_frames_count = math.ceil( diff)
        frame_no += add_frames_count
        if frame_no >= video_frames_count:             
            break
        frame_ids.append(frame_no)
        cur_time += add_frames_count * video_frame_duration
        target_time += target_frame_duration
    frame_ids = frame_ids[:max_target_frames_count]
    return frame_ids

import os
from datetime import datetime

def get_file_creation_date(file_path):
    # On Windows
    if os.name == 'nt':
        return datetime.fromtimestamp(os.path.getctime(file_path))
    # On Unix/Linux/Mac (gets last status change, not creation)
    else:
        stat = os.stat(file_path)
    return datetime.fromtimestamp(stat.st_birthtime if hasattr(stat, 'st_birthtime') else stat.st_mtime)

def truncate_for_filesystem(s, max_bytes=255):
    if len(s.encode('utf-8')) <= max_bytes: return s
    l, r = 0, len(s)
    while l < r:
        m = (l + r + 1) // 2
        if len(s[:m].encode('utf-8')) <= max_bytes: l = m
        else: r = m - 1
    return s[:l]

@lru_cache(maxsize=100)
def get_video_info(video_path):
    global video_info_cache
    import cv2
    cap = cv2.VideoCapture(video_path)
    
    # Get FPS
    fps = round(cap.get(cv2.CAP_PROP_FPS))
    
    # Get resolution
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) 
    cap.release()
    
    return fps, width, height, frame_count

def get_video_frame(file_name: str, frame_no: int, return_last_if_missing: bool = False, target_fps = None,  return_PIL = True) -> torch.Tensor:
    """Extract nth frame from video as PyTorch tensor normalized to [-1, 1]."""
    cap = cv2.VideoCapture(file_name)
    
    if not cap.isOpened():
        raise ValueError(f"Cannot open video: {file_name}")
    
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = round(cap.get(cv2.CAP_PROP_FPS))
    if target_fps is not None:
        frame_no = round(target_fps * frame_no /fps)

    # Handle out of bounds
    if frame_no >= total_frames or frame_no < 0:
        if return_last_if_missing:
            frame_no = total_frames - 1
        else:
            cap.release()
            raise IndexError(f"Frame {frame_no} out of bounds (0-{total_frames-1})")
    
    # Get frame
    cap.set(cv2.CAP_PROP_POS_FRAMES, frame_no)
    ret, frame = cap.read()
    cap.release()
    
    if not ret:
        raise ValueError(f"Failed to read frame {frame_no}")
    
    # Convert BGR->RGB, reshape to (C,H,W), normalize to [-1,1]
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    if return_PIL:
          return Image.fromarray(frame)
    else:
        return (torch.from_numpy(frame).permute(2, 0, 1).float() / 127.5) - 1.0
# def get_video_frame(file_name, frame_no):
#     decord.bridge.set_bridge('torch')
#     reader = decord.VideoReader(file_name)

#     frame = reader.get_batch([frame_no]).squeeze(0)
#     img = Image.fromarray(frame.numpy().astype(np.uint8))
#     return img

def convert_image_to_video(image):
    if image is None:
        return None
    
    # Convert PIL/numpy image to OpenCV format if needed
    if isinstance(image, np.ndarray):
        # Gradio images are typically RGB, OpenCV expects BGR
        img_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    else:
        # Handle PIL Image
        img_array = np.array(image)
        img_bgr = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
    
    height, width = img_bgr.shape[:2]
    
    # Create temporary video file (auto-cleaned by Gradio)
    with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(temp_video.name, fourcc, 30.0, (width, height))
        out.write(img_bgr)
        out.release()
        return temp_video.name
    
def resize_lanczos(img, h, w):
    img = (img + 1).float().mul_(127.5)
    img = Image.fromarray(np.clip(img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8))
    img = img.resize((w,h), resample=Image.Resampling.LANCZOS) 
    img = torch.from_numpy(np.array(img).astype(np.float32)).movedim(-1, 0)
    img = img.div(127.5).sub_(1)
    return img

def remove_background(img, session=None):
    if session ==None:
        session = new_session() 
    img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8))
    img = remove(img, session=session, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
    return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0)


def convert_image_to_tensor(image):
    return torch.from_numpy(np.array(image).astype(np.float32)).div_(127.5).sub_(1.).movedim(-1, 0)

def convert_tensor_to_image(t, frame_no = 0, mask_levels = False):
    if len(t.shape) == 4:
        t = t[:, frame_no] 
    if t.shape[0]== 1:
        t = t.expand(3,-1,-1)
    if mask_levels:
        return Image.fromarray(t.clone().mul_(255).permute(1,2,0).to(torch.uint8).cpu().numpy())
    else:
        return Image.fromarray(t.clone().add_(1.).mul_(127.5).permute(1,2,0).to(torch.uint8).cpu().numpy())

def save_image(tensor_image, name, frame_no = -1):
    convert_tensor_to_image(tensor_image, frame_no).save(name)

def get_outpainting_full_area_dimensions(frame_height,frame_width, outpainting_dims):
    outpainting_top, outpainting_bottom, outpainting_left, outpainting_right= outpainting_dims
    frame_height = int(frame_height * (100 + outpainting_top + outpainting_bottom) / 100)
    frame_width =  int(frame_width * (100 + outpainting_left + outpainting_right) / 100)
    return frame_height, frame_width  

def rgb_bw_to_rgba_mask(img, thresh=127):   
    a = img.convert('L').point(lambda p: 255 if p > thresh else 0)  # alpha
    out = Image.new('RGBA', img.size, (255, 255, 255, 0))           # white, transparent
    out.putalpha(a)                                                 # white where alpha=255
    return out
                        


def  get_outpainting_frame_location(final_height, final_width,  outpainting_dims, block_size = 8):
    outpainting_top, outpainting_bottom, outpainting_left, outpainting_right= outpainting_dims
    raw_height = int(final_height / ((100 + outpainting_top + outpainting_bottom) / 100))
    height = int(raw_height / block_size) * block_size
    extra_height = raw_height - height
          
    raw_width = int(final_width / ((100 + outpainting_left + outpainting_right) / 100)) 
    width = int(raw_width / block_size) * block_size
    extra_width = raw_width - width  
    margin_top = int(outpainting_top/(100 + outpainting_top + outpainting_bottom) * final_height)
    if extra_height != 0 and (outpainting_top + outpainting_bottom) != 0:
        margin_top += int(outpainting_top / (outpainting_top + outpainting_bottom) * extra_height)
    if (margin_top + height) > final_height or outpainting_bottom == 0: margin_top = final_height - height
    margin_left = int(outpainting_left/(100 + outpainting_left + outpainting_right) * final_width)
    if extra_width != 0 and (outpainting_left + outpainting_right) != 0:
        margin_left += int(outpainting_left / (outpainting_left + outpainting_right) * extra_height)
    if (margin_left + width) > final_width or outpainting_right == 0: margin_left = final_width - width
    return height, width, margin_top, margin_left

def rescale_and_crop(img, w, h):
    ow, oh = img.size
    target_ratio = w / h
    orig_ratio = ow / oh
    
    if orig_ratio > target_ratio:
        # Crop width first
        nw = int(oh * target_ratio)
        img = img.crop(((ow - nw) // 2, 0, (ow + nw) // 2, oh))
    else:
        # Crop height first
        nh = int(ow / target_ratio)
        img = img.crop((0, (oh - nh) // 2, ow, (oh + nh) // 2))
    
    return img.resize((w, h), Image.LANCZOS)

def calculate_new_dimensions(canvas_height, canvas_width, image_height, image_width, fit_into_canvas,  block_size = 16):
    if fit_into_canvas == None or fit_into_canvas == 2:
        # return image_height, image_width
        return canvas_height, canvas_width
    if fit_into_canvas == 1:
        scale1  = min(canvas_height / image_height, canvas_width / image_width)
        scale2  = min(canvas_width / image_height, canvas_height / image_width)
        scale = max(scale1, scale2) 
    else: #0 or #2 (crop)
        scale = (canvas_height * canvas_width / (image_height * image_width))**(1/2)

    new_height = round( image_height * scale / block_size) * block_size
    new_width = round( image_width * scale / block_size) * block_size
    return new_height, new_width

def calculate_dimensions_and_resize_image(image, canvas_height, canvas_width, fit_into_canvas, fit_crop, block_size = 16):
    if fit_crop:
        image = rescale_and_crop(image, canvas_width, canvas_height)
        new_width, new_height = image.size  
    else:
        image_width, image_height = image.size
        new_height, new_width = calculate_new_dimensions(canvas_height, canvas_width, image_height, image_width, fit_into_canvas, block_size = block_size )
        image = image.resize((new_width, new_height), resample=Image.Resampling.LANCZOS) 
    return image, new_height, new_width

def resize_and_remove_background(img_list, budget_width, budget_height, rm_background, any_background_ref, fit_into_canvas = 0, block_size= 16, outpainting_dims = None, background_ref_outpainted = True, inpaint_color = 127.5, return_tensor = False, ignore_last_refs = 0 ):
    if rm_background:
        session = new_session() 

    output_list =[]
    output_mask_list =[]
    for i, img in enumerate(img_list if ignore_last_refs == 0 else img_list[:-ignore_last_refs]):
        width, height =  img.size 
        resized_mask = None
        if any_background_ref == 1 and i==0 or any_background_ref == 2:
            if outpainting_dims is not None and background_ref_outpainted:
                resized_image, resized_mask = fit_image_into_canvas(img, (budget_height, budget_width), inpaint_color, full_frame = True, outpainting_dims = outpainting_dims, return_mask= True, return_image= True)
            elif img.size != (budget_width, budget_height):
                resized_image= img.resize((budget_width, budget_height), resample=Image.Resampling.LANCZOS) 
            else:
                resized_image =img
        elif fit_into_canvas == 1:
            white_canvas = np.ones((budget_height, budget_width, 3), dtype=np.uint8) * 255 
            scale = min(budget_height / height, budget_width / width)
            new_height = int(height * scale)
            new_width = int(width * scale)
            resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS) 
            top = (budget_height - new_height) // 2
            left = (budget_width - new_width) // 2
            white_canvas[top:top + new_height, left:left + new_width] = np.array(resized_image)            
            resized_image = Image.fromarray(white_canvas)  
        else:
            scale = (budget_height * budget_width / (height * width))**(1/2)
            new_height = int( round(height * scale / block_size) * block_size)
            new_width = int( round(width * scale / block_size) * block_size)
            resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS) 
        if rm_background  and not (any_background_ref and i==0 or any_background_ref == 2) :
            # resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1,alpha_matting_background_threshold = 70, alpha_foreground_background_threshold = 100, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
            resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
        if return_tensor:
            output_list.append(convert_image_to_tensor(resized_image).unsqueeze(1)) 
        else:
            output_list.append(resized_image) 
        output_mask_list.append(resized_mask)
    if ignore_last_refs:
        for img in img_list[-ignore_last_refs:]:
            output_list.append(convert_image_to_tensor(img).unsqueeze(1) if return_tensor else img) 
            output_mask_list.append(None)

    return output_list, output_mask_list

def fit_image_into_canvas(ref_img, image_size, canvas_tf_bg =127.5, device ="cpu", full_frame = False, outpainting_dims = None, return_mask = False, return_image = False):
    from shared.utils.utils import save_image
    inpaint_color = canvas_tf_bg / 127.5 - 1

    ref_width, ref_height = ref_img.size
    if (ref_height, ref_width) == image_size and outpainting_dims  == None:
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
        canvas = torch.zeros_like(ref_img[:1]) if return_mask else None
    else:
        if outpainting_dims != None:
            final_height, final_width = image_size
            canvas_height, canvas_width, margin_top, margin_left =   get_outpainting_frame_location(final_height, final_width,  outpainting_dims, 1)        
        else:
            canvas_height, canvas_width = image_size
        if full_frame:
            new_height = canvas_height
            new_width = canvas_width
            top = left = 0 
        else:
            # if fill_max  and (canvas_height - new_height) < 16:
            #     new_height = canvas_height
            # if fill_max  and (canvas_width - new_width) < 16:
            #     new_width = canvas_width
            scale = min(canvas_height / ref_height, canvas_width / ref_width)
            new_height = int(ref_height * scale)
            new_width = int(ref_width * scale)
            top = (canvas_height - new_height) // 2
            left = (canvas_width - new_width) // 2
        ref_img = ref_img.resize((new_width, new_height), resample=Image.Resampling.LANCZOS) 
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
        if outpainting_dims != None:
            canvas = torch.full((3, 1, final_height, final_width), inpaint_color, dtype= torch.float, device=device) # [-1, 1]
            canvas[:, :, margin_top + top:margin_top + top + new_height, margin_left + left:margin_left + left + new_width] = ref_img 
        else:
            canvas = torch.full((3, 1, canvas_height, canvas_width), inpaint_color, dtype= torch.float, device=device) # [-1, 1]
            canvas[:, :, top:top + new_height, left:left + new_width] = ref_img 
        ref_img = canvas
        canvas = None
        if return_mask:
            if outpainting_dims != None:
                canvas = torch.ones((1, 1, final_height, final_width), dtype= torch.float, device=device) # [-1, 1]
                canvas[:, :, margin_top + top:margin_top + top + new_height, margin_left + left:margin_left + left + new_width] = 0
            else:
                canvas = torch.ones((1, 1, canvas_height, canvas_width), dtype= torch.float, device=device) # [-1, 1]
                canvas[:, :, top:top + new_height, left:left + new_width] = 0
            canvas = canvas.to(device)
    if return_image:
        return convert_tensor_to_image(ref_img), canvas

    return ref_img.to(device), canvas

def prepare_video_guide_and_mask( video_guides, video_masks, pre_video_guide, image_size, current_video_length = 81, latent_size = 4, any_mask = False, any_guide_padding = False, guide_inpaint_color = 127.5, keep_video_guide_frames = [],  inject_frames = [], outpainting_dims = None, device ="cpu"):
    src_videos, src_masks = [], []
    inpaint_color_compressed = guide_inpaint_color/127.5 - 1
    prepend_count = pre_video_guide.shape[1] if pre_video_guide is not None else 0
    for guide_no, (cur_video_guide, cur_video_mask) in enumerate(zip(video_guides, video_masks)):
        src_video, src_mask = cur_video_guide, cur_video_mask
        if pre_video_guide is not None:
            src_video = pre_video_guide if src_video is None else torch.cat( [pre_video_guide, src_video], dim=1)
            if any_mask:
                src_mask = torch.zeros_like(pre_video_guide[:1]) if src_mask is None else torch.cat( [torch.zeros_like(pre_video_guide[:1]), src_mask], dim=1)

        if any_guide_padding:
            if src_video is None:
                src_video = torch.full( (3, current_video_length, *image_size ), inpaint_color_compressed, dtype = torch.float, device= device)
            elif src_video.shape[1] < current_video_length:
                src_video = torch.cat([src_video, torch.full( (3, current_video_length - src_video.shape[1], *src_video.shape[-2:]  ), inpaint_color_compressed, dtype = src_video.dtype, device= src_video.device) ], dim=1)
        elif src_video is not None:
            new_num_frames = (src_video.shape[1] - 1) // latent_size * latent_size + 1 
            src_video = src_video[:, :new_num_frames]

        if any_mask and src_video is not None:
            if src_mask is None:                   
                src_mask = torch.ones_like(src_video[:1])
            elif src_mask.shape[1] < src_video.shape[1]:
                src_mask = torch.cat([src_mask, torch.full( (1, src_video.shape[1]- src_mask.shape[1], *src_mask.shape[-2:]  ), 1, dtype = src_video.dtype, device= src_video.device) ], dim=1)
            else:
                src_mask = src_mask[:, :src_video.shape[1]]                                        

        if src_video is not None :
            for k, keep in enumerate(keep_video_guide_frames):
                if not keep:
                    pos = prepend_count + k
                    src_video[:, pos:pos+1] = inpaint_color_compressed
                    if any_mask: src_mask[:, pos:pos+1] = 1

            for k, frame in enumerate(inject_frames):
                if frame != None:
                    pos = prepend_count + k
                    src_video[:, pos:pos+1], msk = fit_image_into_canvas(frame, image_size, guide_inpaint_color, device, True, outpainting_dims, return_mask= any_mask)
                    if any_mask: src_mask[:, pos:pos+1] = msk
        src_videos.append(src_video)
        src_masks.append(src_mask)
    return src_videos, src_masks