Spaces:
Configuration error
Configuration error
File size: 13,878 Bytes
2b67076 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
from dataclasses import dataclass
import torch
from torch import Tensor, nn
from .modules.layers import (
DoubleStreamBlock,
EmbedND,
LastLayer,
MLPEmbedder,
SingleStreamBlock,
timestep_embedding,
DistilledGuidance,
ChromaModulationOut,
SigLIPMultiFeatProjModel,
)
from .modules.lora import LinearLora, replace_linear_with_lora
@dataclass
class FluxParams:
in_channels: int
out_channels: int
vec_in_dim: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list[int]
theta: int
qkv_bias: bool
guidance_embed: bool
chroma: bool = False
eso: bool = False
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0):
# This function slices up the modulations tensor which has the following layout:
# single : num_single_blocks * 3 elements
# double_img : num_double_blocks * 6 elements
# double_txt : num_double_blocks * 6 elements
# final : 2 elements
if block_type == "final":
return (tensor[:, -2:-1, :], tensor[:, -1:, :])
single_block_count = self.params.depth_single_blocks
double_block_count = self.params.depth
offset = 3 * idx
if block_type == "single":
return ChromaModulationOut.from_offset(tensor, offset)
# Double block modulations are 6 elements so we double 3 * idx.
offset *= 2
if block_type in {"double_img", "double_txt"}:
# Advance past the single block modulations.
offset += 3 * single_block_count
if block_type == "double_txt":
# Advance past the double block img modulations.
offset += 6 * double_block_count
return (
ChromaModulationOut.from_offset(tensor, offset),
ChromaModulationOut.from_offset(tensor, offset + 3),
)
raise ValueError("Bad block_type")
def __init__(self, params: FluxParams):
super().__init__()
self.params = params
self.in_channels = params.in_channels
self.out_channels = params.out_channels
self.chroma = params.chroma
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
)
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
if self.chroma:
self.distilled_guidance_layer = DistilledGuidance(
in_dim=64,
hidden_dim=5120,
out_dim=3072,
n_layers=5,
)
else:
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
chroma_modulation = self.chroma,
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, chroma_modulation = self.chroma)
for _ in range(params.depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, chroma_modulation = self.chroma)
def preprocess_loras(self, model_type, sd):
new_sd = {}
if len(sd) == 0: return sd
def swap_scale_shift(weight):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
first_key= next(iter(sd))
if first_key.startswith("lora_unet_"):
new_sd = {}
print("Converting Lora Safetensors format to Lora Diffusers format")
repl_list = ["linear1", "linear2", "modulation", "img_attn", "txt_attn", "img_mlp", "txt_mlp", "img_mod", "txt_mod"]
src_list = ["_" + k + "." for k in repl_list]
src_list2 = ["_" + k + "_" for k in repl_list]
tgt_list = ["." + k + "." for k in repl_list]
for k,v in sd.items():
k = k.replace("lora_unet_blocks_","diffusion_model.blocks.")
k = k.replace("lora_unet__blocks_","diffusion_model.blocks.")
k = k.replace("lora_unet_single_blocks_","diffusion_model.single_blocks.")
k = k.replace("lora_unet_double_blocks_","diffusion_model.double_blocks.")
for s,s2, t in zip(src_list, src_list2, tgt_list):
k = k.replace(s,t)
k = k.replace(s2,t)
k = k.replace("lora_up","lora_B")
k = k.replace("lora_down","lora_A")
new_sd[k] = v
elif first_key.startswith("transformer."):
root_src = ["time_text_embed.timestep_embedder.linear_1", "time_text_embed.timestep_embedder.linear_2", "time_text_embed.text_embedder.linear_1", "time_text_embed.text_embedder.linear_2",
"time_text_embed.guidance_embedder.linear_1", "time_text_embed.guidance_embedder.linear_2",
"x_embedder", "context_embedder", "proj_out" ]
root_tgt = ["time_in.in_layer", "time_in.out_layer", "vector_in.in_layer", "vector_in.out_layer",
"guidance_in.in_layer", "guidance_in.out_layer",
"img_in", "txt_in", "final_layer.linear" ]
double_src = ["norm1.linear", "norm1_context.linear", "attn.norm_q", "attn.norm_k", "ff.net.0.proj", "ff.net.2", "ff_context.net.0.proj", "ff_context.net.2", "attn.to_out.0" ,"attn.to_add_out", "attn.to_out", ".attn.to_", ".attn.add_q_proj.", ".attn.add_k_proj.", ".attn.add_v_proj.", ]
double_tgt = ["img_mod.lin", "txt_mod.lin", "img_attn.norm.query_norm", "img_attn.norm.key_norm", "img_mlp.0", "img_mlp.2", "txt_mlp.0", "txt_mlp.2", "img_attn.proj", "txt_attn.proj", "img_attn.proj", ".img_attn.", ".txt_attn.q.", ".txt_attn.k.", ".txt_attn.v."]
single_src = ["norm.linear", "attn.norm_q", "attn.norm_k", "proj_out",".attn.to_q.", ".attn.to_k.", ".attn.to_v.", ".proj_mlp."]
single_tgt = ["modulation.lin","norm.query_norm", "norm.key_norm", "linear2", ".linear1_attn_q.", ".linear1_attn_k.", ".linear1_attn_v.", ".linear1_mlp."]
for k,v in sd.items():
if k.startswith("transformer.single_transformer_blocks"):
k = k.replace("transformer.single_transformer_blocks", "diffusion_model.single_blocks")
for src, tgt in zip(single_src, single_tgt):
k = k.replace(src, tgt)
elif k.startswith("transformer.transformer_blocks"):
k = k.replace("transformer.transformer_blocks", "diffusion_model.double_blocks")
for src, tgt in zip(double_src, double_tgt):
k = k.replace(src, tgt)
else:
k = k.replace("transformer.", "diffusion_model.")
for src, tgt in zip(root_src, root_tgt):
k = k.replace(src, tgt)
if "norm_out.linear" in k:
if "lora_B" in k:
v = swap_scale_shift(v)
k = k.replace("norm_out.linear", "final_layer.adaLN_modulation.1")
new_sd[k] = v
# elif not first_key.startswith("diffusion_model.") and not first_key.startswith("transformer."):
# for k,v in sd.items():
# if "double" in k:
# k = k.replace(".processor.proj_lora1.", ".img_attn.proj.lora_")
# k = k.replace(".processor.proj_lora2.", ".txt_attn.proj.lora_")
# k = k.replace(".processor.qkv_lora1.", ".img_attn.qkv.lora_")
# k = k.replace(".processor.qkv_lora2.", ".txt_attn.qkv.lora_")
# else:
# k = k.replace(".processor.qkv_lora.", ".linear1_qkv.lora_")
# k = k.replace(".processor.proj_lora.", ".linear2.lora_")
# k = "diffusion_model." + k
# new_sd[k] = v
# from mmgp import safetensors2
# safetensors2.torch_write_file(new_sd, "fff.safetensors")
else:
new_sd = sd
return new_sd
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt_list,
txt_ids_list,
timesteps: Tensor,
y_list,
img_len = 0,
guidance: Tensor | None = None,
callback= None,
pipeline =None,
siglip_embedding = None,
siglip_embedding_ids = None,
) -> Tensor:
sz = len(txt_list)
# running on sequences img
img = self.img_in(img)
img_list = [img] if sz==1 else [img, img.clone()]
if self.chroma:
mod_index_length = 344
distill_timestep = timestep_embedding(timesteps, 16).to(img.device, img.dtype)
guidance = torch.tensor([0.]* distill_timestep.shape[0])
distil_guidance = timestep_embedding(guidance, 16).to(img.device, img.dtype)
modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype)
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype)
input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype)
mod_vectors = self.distilled_guidance_layer(input_vec)
else:
vec = self.time_in(timestep_embedding(timesteps, 256))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec += self.guidance_in(timestep_embedding(guidance, 256))
vec_list = [ vec + self.vector_in(y) for y in y_list]
img = None
txt_list = [self.txt_in(txt) for txt in txt_list ]
if siglip_embedding is not None:
txt_list = [torch.cat((siglip_embedding, txt) , dim=1) for txt in txt_list]
txt_ids_list = [torch.cat((siglip_embedding_ids, txt_id) , dim=1) for txt_id in txt_ids_list]
pe_list = [self.pe_embedder(torch.cat((txt_ids, img_ids), dim=1)) for txt_ids in txt_ids_list]
for i, block in enumerate(self.double_blocks):
if self.chroma: vec_list = [( self.get_modulations(mod_vectors, "double_img", idx=i), self.get_modulations(mod_vectors, "double_txt", idx=i))] * sz
if callback != None:
callback(-1, None, False, True)
if pipeline._interrupt:
return [None] * sz
for img, txt, pe, vec in zip(img_list, txt_list, pe_list, vec_list):
img[...], txt[...] = block(img=img, txt=txt, vec=vec, pe=pe)
img = txt = pe = vec= None
img_list = [torch.cat((txt, img), 1) for txt, img in zip(txt_list, img_list)]
for i, block in enumerate(self.single_blocks):
if self.chroma: vec_list= [self.get_modulations(mod_vectors, "single", idx=i)] * sz
if callback != None:
callback(-1, None, False, True)
if pipeline._interrupt:
return [None] * sz
for img, pe, vec in zip(img_list, pe_list, vec_list):
img[...]= block(x=img, vec=vec, pe=pe)
img = pe = vec = None
img_list = [ img[:, txt.shape[1] : txt.shape[1] + img_len, ...] for img, txt in zip(img_list, txt_list)]
if self.chroma: vec_list = [self.get_modulations(mod_vectors, "final")] * sz
out_list = []
for i, (img, vec) in enumerate(zip(img_list, vec_list)):
out_list.append( self.final_layer(img, vec)) # (N, T, patch_size ** 2 * out_channels)
img_list[i] = img = vec = None
return out_list
class FluxLoraWrapper(Flux):
def __init__(
self,
lora_rank: int = 128,
lora_scale: float = 1.0,
*args,
**kwargs,
) -> None:
super().__init__(*args, **kwargs)
self.lora_rank = lora_rank
replace_linear_with_lora(
self,
max_rank=lora_rank,
scale=lora_scale,
)
def set_lora_scale(self, scale: float) -> None:
for module in self.modules():
if isinstance(module, LinearLora):
module.set_scale(scale=scale)
|