File size: 13,878 Bytes
2b67076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
from dataclasses import dataclass

import torch
from torch import Tensor, nn

from .modules.layers import (
    DoubleStreamBlock,
    EmbedND,
    LastLayer,
    MLPEmbedder,
    SingleStreamBlock,
    timestep_embedding,
    DistilledGuidance,
    ChromaModulationOut,
    SigLIPMultiFeatProjModel,
)
from .modules.lora import LinearLora, replace_linear_with_lora


@dataclass
class FluxParams:
    in_channels: int
    out_channels: int
    vec_in_dim: int
    context_in_dim: int
    hidden_size: int
    mlp_ratio: float
    num_heads: int
    depth: int
    depth_single_blocks: int
    axes_dim: list[int]
    theta: int
    qkv_bias: bool
    guidance_embed: bool
    chroma: bool = False
    eso: bool = False

class Flux(nn.Module):
    """
    Transformer model for flow matching on sequences.
    """
    def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0):
        # This function slices up the modulations tensor which has the following layout:
        #   single     : num_single_blocks * 3 elements
        #   double_img : num_double_blocks * 6 elements
        #   double_txt : num_double_blocks * 6 elements
        #   final      : 2 elements
        if block_type == "final":
            return (tensor[:, -2:-1, :], tensor[:, -1:, :])
        single_block_count = self.params.depth_single_blocks
        double_block_count = self.params.depth
        offset = 3 * idx
        if block_type == "single":
            return ChromaModulationOut.from_offset(tensor, offset)
        # Double block modulations are 6 elements so we double 3 * idx.
        offset *= 2
        if block_type in {"double_img", "double_txt"}:
            # Advance past the single block modulations.
            offset += 3 * single_block_count
            if block_type == "double_txt":
                # Advance past the double block img modulations.
                offset += 6 * double_block_count
            return (
                ChromaModulationOut.from_offset(tensor, offset),
                ChromaModulationOut.from_offset(tensor, offset + 3),
            )
        raise ValueError("Bad block_type")
    
    def __init__(self, params: FluxParams):
        super().__init__()

        self.params = params
        self.in_channels = params.in_channels
        self.out_channels = params.out_channels
        self.chroma = params.chroma
        if params.hidden_size % params.num_heads != 0:
            raise ValueError(
                f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
            )
        pe_dim = params.hidden_size // params.num_heads
        if sum(params.axes_dim) != pe_dim:
            raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
        self.hidden_size = params.hidden_size
        self.num_heads = params.num_heads
        self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
        self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)

        self.guidance_in = (
            MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
        )
        self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
        if self.chroma:
            self.distilled_guidance_layer = DistilledGuidance(
                        in_dim=64,
                        hidden_dim=5120,
                        out_dim=3072, 
                        n_layers=5,
                )
        else:
            self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
            self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)

        self.double_blocks = nn.ModuleList(
            [
                DoubleStreamBlock(
                    self.hidden_size,
                    self.num_heads,
                    mlp_ratio=params.mlp_ratio,
                    qkv_bias=params.qkv_bias,
                    chroma_modulation = self.chroma,
                )
                for _ in range(params.depth)
            ]
        )

        self.single_blocks = nn.ModuleList(
            [
                SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, chroma_modulation = self.chroma)
                for _ in range(params.depth_single_blocks)
            ]
        )

        self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, chroma_modulation = self.chroma)

    def preprocess_loras(self, model_type, sd):
        new_sd = {}
        if len(sd) == 0: return sd

        def swap_scale_shift(weight):
            shift, scale = weight.chunk(2, dim=0)
            new_weight = torch.cat([scale, shift], dim=0)
            return new_weight

        first_key= next(iter(sd))
        if first_key.startswith("lora_unet_"):
            new_sd = {}
            print("Converting Lora Safetensors format to Lora Diffusers format")
            repl_list = ["linear1", "linear2", "modulation", "img_attn", "txt_attn", "img_mlp", "txt_mlp", "img_mod", "txt_mod"]
            src_list = ["_" + k + "." for k in repl_list]
            src_list2 = ["_" + k + "_" for k in repl_list]
            tgt_list = ["." + k + "." for k in repl_list]

            for k,v in sd.items():
                k = k.replace("lora_unet_blocks_","diffusion_model.blocks.")
                k = k.replace("lora_unet__blocks_","diffusion_model.blocks.")
                k = k.replace("lora_unet_single_blocks_","diffusion_model.single_blocks.")
                k = k.replace("lora_unet_double_blocks_","diffusion_model.double_blocks.")

                for s,s2, t in zip(src_list, src_list2, tgt_list):
                    k = k.replace(s,t)
                    k = k.replace(s2,t)

                k = k.replace("lora_up","lora_B")
                k = k.replace("lora_down","lora_A")

                new_sd[k] = v

        elif first_key.startswith("transformer."):
            root_src = ["time_text_embed.timestep_embedder.linear_1", "time_text_embed.timestep_embedder.linear_2", "time_text_embed.text_embedder.linear_1", "time_text_embed.text_embedder.linear_2",
                    "time_text_embed.guidance_embedder.linear_1", "time_text_embed.guidance_embedder.linear_2",
                    "x_embedder", "context_embedder", "proj_out" ]

            root_tgt = ["time_in.in_layer", "time_in.out_layer", "vector_in.in_layer", "vector_in.out_layer",
                    "guidance_in.in_layer", "guidance_in.out_layer",
                    "img_in", "txt_in", "final_layer.linear" ]

            double_src = ["norm1.linear", "norm1_context.linear", "attn.norm_q",  "attn.norm_k", "ff.net.0.proj", "ff.net.2", "ff_context.net.0.proj", "ff_context.net.2", "attn.to_out.0" ,"attn.to_add_out", "attn.to_out", ".attn.to_", ".attn.add_q_proj.", ".attn.add_k_proj.", ".attn.add_v_proj.",  ] 
            double_tgt = ["img_mod.lin", "txt_mod.lin", "img_attn.norm.query_norm", "img_attn.norm.key_norm", "img_mlp.0", "img_mlp.2", "txt_mlp.0", "txt_mlp.2", "img_attn.proj", "txt_attn.proj", "img_attn.proj", ".img_attn.", ".txt_attn.q.", ".txt_attn.k.", ".txt_attn.v."] 

            single_src = ["norm.linear", "attn.norm_q", "attn.norm_k", "proj_out",".attn.to_q.", ".attn.to_k.", ".attn.to_v.", ".proj_mlp."]
            single_tgt = ["modulation.lin","norm.query_norm", "norm.key_norm", "linear2", ".linear1_attn_q.", ".linear1_attn_k.", ".linear1_attn_v.", ".linear1_mlp."]


            for k,v in sd.items():
                if k.startswith("transformer.single_transformer_blocks"):
                    k = k.replace("transformer.single_transformer_blocks", "diffusion_model.single_blocks")
                    for src, tgt in zip(single_src, single_tgt):
                        k = k.replace(src, tgt)
                elif k.startswith("transformer.transformer_blocks"):
                    k = k.replace("transformer.transformer_blocks", "diffusion_model.double_blocks")
                    for src, tgt in zip(double_src, double_tgt):
                        k = k.replace(src, tgt)
                else:
                    k = k.replace("transformer.", "diffusion_model.")
                    for src, tgt in zip(root_src, root_tgt):
                        k = k.replace(src, tgt)

                    if "norm_out.linear" in k:
                        if "lora_B" in k:
                            v = swap_scale_shift(v)
                        k = k.replace("norm_out.linear", "final_layer.adaLN_modulation.1")            
                new_sd[k] = v
        # elif not first_key.startswith("diffusion_model.") and not first_key.startswith("transformer."):
        #     for k,v in sd.items():
        #         if "double" in k:
        #             k = k.replace(".processor.proj_lora1.", ".img_attn.proj.lora_")
        #             k = k.replace(".processor.proj_lora2.", ".txt_attn.proj.lora_")
        #             k = k.replace(".processor.qkv_lora1.", ".img_attn.qkv.lora_")
        #             k = k.replace(".processor.qkv_lora2.", ".txt_attn.qkv.lora_")
        #         else:
        #             k = k.replace(".processor.qkv_lora.", ".linear1_qkv.lora_")
        #             k = k.replace(".processor.proj_lora.", ".linear2.lora_")

        #         k = "diffusion_model." + k
        #         new_sd[k] = v
        #     from mmgp import safetensors2
        #     safetensors2.torch_write_file(new_sd, "fff.safetensors")
        else:
            new_sd = sd
        return new_sd    

    def forward(
        self,
        img: Tensor,
        img_ids: Tensor,
        txt_list,
        txt_ids_list,
        timesteps: Tensor,
        y_list,
        img_len = 0,
        guidance: Tensor | None = None,
        callback= None,
        pipeline =None,
        siglip_embedding = None,
        siglip_embedding_ids = None,
    ) -> Tensor:

        sz = len(txt_list)        
        # running on sequences img
        img = self.img_in(img)
        img_list = [img] if sz==1 else [img, img.clone()]
        
        if self.chroma:
            mod_index_length = 344
            distill_timestep = timestep_embedding(timesteps, 16).to(img.device, img.dtype)
            guidance =  torch.tensor([0.]* distill_timestep.shape[0])
            distil_guidance = timestep_embedding(guidance, 16).to(img.device, img.dtype)
            modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype)
            modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
            timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype)
            input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype)
            mod_vectors = self.distilled_guidance_layer(input_vec)
        else:
            vec = self.time_in(timestep_embedding(timesteps, 256))
            if self.params.guidance_embed:
                if guidance is None:
                    raise ValueError("Didn't get guidance strength for guidance distilled model.")
                vec +=  self.guidance_in(timestep_embedding(guidance, 256))
            vec_list = [ vec + self.vector_in(y) for y in y_list]

        img = None
        txt_list = [self.txt_in(txt) for txt in txt_list ]
        if siglip_embedding is not None:
            txt_list = [torch.cat((siglip_embedding, txt) , dim=1) for txt in txt_list]
            txt_ids_list = [torch.cat((siglip_embedding_ids, txt_id) , dim=1) for txt_id in txt_ids_list]

        pe_list = [self.pe_embedder(torch.cat((txt_ids, img_ids), dim=1)) for txt_ids in txt_ids_list] 

        for i, block in enumerate(self.double_blocks):
            if self.chroma: vec_list = [( self.get_modulations(mod_vectors, "double_img", idx=i), self.get_modulations(mod_vectors, "double_txt", idx=i))] * sz
            if callback != None:
                callback(-1, None, False, True)
            if pipeline._interrupt:
                return [None] * sz
            for img, txt, pe, vec in zip(img_list, txt_list, pe_list, vec_list):
                img[...], txt[...] = block(img=img, txt=txt, vec=vec, pe=pe)
                img = txt = pe = vec= None

        img_list = [torch.cat((txt, img), 1) for txt, img in zip(txt_list, img_list)]

        for i, block in enumerate(self.single_blocks):
            if self.chroma: vec_list= [self.get_modulations(mod_vectors, "single", idx=i)] * sz
            if callback != None:
                callback(-1, None, False, True)
            if pipeline._interrupt:
                return [None] * sz
            for img, pe, vec in zip(img_list, pe_list, vec_list):
                img[...]= block(x=img, vec=vec, pe=pe)
                img = pe = vec = None
        img_list = [ img[:, txt.shape[1] : txt.shape[1] + img_len, ...] for img, txt in zip(img_list, txt_list)]

        if self.chroma: vec_list = [self.get_modulations(mod_vectors, "final")] * sz
        out_list = []
        for i, (img, vec) in enumerate(zip(img_list, vec_list)):
            out_list.append( self.final_layer(img, vec)) # (N, T, patch_size ** 2 * out_channels)
            img_list[i] = img = vec = None
        return out_list


class FluxLoraWrapper(Flux):
    def __init__(
        self,
        lora_rank: int = 128,
        lora_scale: float = 1.0,
        *args,
        **kwargs,
    ) -> None:
        super().__init__(*args, **kwargs)

        self.lora_rank = lora_rank

        replace_linear_with_lora(
            self,
            max_rank=lora_rank,
            scale=lora_scale,
        )

    def set_lora_scale(self, scale: float) -> None:
        for module in self.modules():
            if isinstance(module, LinearLora):
                module.set_scale(scale=scale)