File size: 18,945 Bytes
2b67076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import math
from dataclasses import dataclass

import torch
from einops import rearrange
from torch import Tensor, nn

from ..math import attention, rope

def get_linear_split_map():
    hidden_size = 3072
    split_linear_modules_map =  {
                                "qkv" : {"mapped_modules" : ["q", "k", "v"] , "split_sizes": [hidden_size, hidden_size, hidden_size]},
                                "linear1" : {"mapped_modules" : ["linear1_attn_q", "linear1_attn_k", "linear1_attn_v", "linear1_mlp"] , "split_sizes":  [hidden_size, hidden_size, hidden_size, 7*hidden_size- 3*hidden_size]},
                                "linear1_qkv" : {"mapped_modules" : ["linear1_attn_q", "linear1_attn_k", "linear1_attn_v"] , "split_sizes":  [hidden_size, hidden_size, hidden_size]},
                                }
    return split_linear_modules_map


class EmbedND(nn.Module):
    def __init__(self, dim: int, theta: int, axes_dim: list[int]):
        super().__init__()
        self.dim = dim
        self.theta = theta
        self.axes_dim = axes_dim

    def forward(self, ids: Tensor) -> Tensor:
        n_axes = ids.shape[-1]
        emb = torch.cat(
            [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
            dim=-3,
        )

        return emb.unsqueeze(1)


def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
    """
    Create sinusoidal timestep embeddings.
    :param t: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an (N, D) Tensor of positional embeddings.
    """
    t = time_factor * t
    half = dim // 2
    freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
        t.device
    )

    args = t[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    if torch.is_floating_point(t):
        embedding = embedding.to(t)
    return embedding


class MLPEmbedder(nn.Module):
    def __init__(self, in_dim: int, hidden_dim: int):
        super().__init__()
        self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
        self.silu = nn.SiLU()
        self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)

    def forward(self, x: Tensor) -> Tensor:
        return self.out_layer(self.silu(self.in_layer(x)))


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int):
        super().__init__()
        self.scale = nn.Parameter(torch.ones(dim))

    def forward(self, x: Tensor):
        x_dtype = x.dtype
        x = x.float()
        rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
        return (x * rrms).to(dtype=x_dtype) * self.scale



class QKNorm(torch.nn.Module):
    def __init__(self, dim: int):
        super().__init__()
        self.query_norm = RMSNorm(dim)
        self.key_norm = RMSNorm(dim)

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
        if k != None:
            return self.key_norm(k).to(v)
        else: 
            return self.query_norm(q).to(v)
        # q = self.query_norm(q)
        # k = self.key_norm(k)
        # return q.to(v), k.to(v)


class SelfAttention(nn.Module):
    def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.norm = QKNorm(head_dim)
        self.proj = nn.Linear(dim, dim)

    def forward(self, x: Tensor, pe: Tensor) -> Tensor:
        raise Exception("not implemented")

@dataclass
class ModulationOut:
    shift: Tensor
    scale: Tensor
    gate: Tensor

class ChromaModulationOut(ModulationOut):
    @classmethod
    def from_offset(cls, tensor: torch.Tensor, offset: int = 0):
        return cls(
            shift=tensor[:, offset : offset + 1, :],
            scale=tensor[:, offset + 1 : offset + 2, :],
            gate=tensor[:, offset + 2 : offset + 3, :],
        )


def split_mlp(mlp, x, divide = 8):
    x_shape = x.shape
    x = x.view(-1, x.shape[-1])
    chunk_size = int(x.shape[0]/divide)
    chunk_size = int(x_shape[1]/divide)
    x_chunks = torch.split(x, chunk_size)
    for i, x_chunk  in enumerate(x_chunks):
        mlp_chunk = mlp[0](x_chunk)
        mlp_chunk = mlp[1](mlp_chunk)
        x_chunk[...] = mlp[2](mlp_chunk)
    return x.reshape(x_shape)      

class Modulation(nn.Module):
    def __init__(self, dim: int, double: bool):
        super().__init__()
        self.is_double = double
        self.multiplier = 6 if double else 3
        self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)

    def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
        out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)

        return (
            ModulationOut(*out[:3]),
            ModulationOut(*out[3:]) if self.is_double else None,
        )


class DoubleStreamBlock(nn.Module):
    def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, chroma_modulation = False):
        super().__init__()

        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        self.num_heads = num_heads
        self.hidden_size = hidden_size
        self.chroma_modulation = chroma_modulation
        if not chroma_modulation:
            self.img_mod = Modulation(hidden_size, double=True)
        self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)

        self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.img_mlp = nn.Sequential(
            nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
            nn.GELU(approximate="tanh"),
            nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
        )

        if not chroma_modulation:
            self.txt_mod = Modulation(hidden_size, double=True)
        self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)

        self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.txt_mlp = nn.Sequential(
            nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
            nn.GELU(approximate="tanh"),
            nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
        )

    def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
        if self.chroma_modulation:
            (img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
        else:
            img_mod1, img_mod2 = self.img_mod(vec)
            txt_mod1, txt_mod2 = self.txt_mod(vec)

        # prepare image for attention
        img_modulated = self.img_norm1(img)
        img_modulated.mul_(1 + img_mod1.scale)
        img_modulated.add_(img_mod1.shift)

        shape = (*img_modulated.shape[:2], self.num_heads, int(img_modulated.shape[-1] / self.num_heads) )
        img_q = self.img_attn.q(img_modulated).view(*shape).transpose(1,2)
        img_k = self.img_attn.k(img_modulated).view(*shape).transpose(1,2) 
        img_v = self.img_attn.v(img_modulated).view(*shape).transpose(1,2)
        del img_modulated


        img_q= self.img_attn.norm(img_q, None, img_v)
        img_k = self.img_attn.norm(None, img_k, img_v)

        # prepare txt for attention
        txt_modulated = self.txt_norm1(txt)
        txt_modulated.mul_(1 + txt_mod1.scale)
        txt_modulated.add_(txt_mod1.shift)

        shape = (*txt_modulated.shape[:2], self.num_heads, int(txt_modulated.shape[-1] / self.num_heads) )
        txt_q = self.txt_attn.q(txt_modulated).view(*shape).transpose(1,2)
        txt_k = self.txt_attn.k(txt_modulated).view(*shape).transpose(1,2) 
        txt_v = self.txt_attn.v(txt_modulated).view(*shape).transpose(1,2)
        del txt_modulated


        txt_q = self.txt_attn.norm(txt_q, None, txt_v)
        txt_k = self.txt_attn.norm(None, txt_k, txt_v)

        # run actual attention
        q = torch.cat((txt_q, img_q), dim=2)
        del txt_q, img_q
        k = torch.cat((txt_k, img_k), dim=2)
        del txt_k, img_k
        v = torch.cat((txt_v, img_v), dim=2)
        del txt_v, img_v

        qkv_list = [q, k, v]
        del q, k, v
        attn = attention(qkv_list, pe=pe)

        txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]

        # calculate the img blocks
        img.addcmul_(self.img_attn.proj(img_attn), img_mod1.gate)
        mod_img = self.img_norm2(img)
        mod_img.mul_(1 + img_mod2.scale)
        mod_img.add_(img_mod2.shift)
        mod_img = split_mlp(self.img_mlp, mod_img)
        # mod_img = self.img_mlp(mod_img)
        img.addcmul_( mod_img, img_mod2.gate)
        mod_img = None

        # calculate the txt blocks
        txt.addcmul_(self.txt_attn.proj(txt_attn), txt_mod1.gate)
        txt.addcmul_(self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift), txt_mod2.gate)
        return img, txt


class SingleStreamBlock(nn.Module):
    """
    A DiT block with parallel linear layers as described in
    https://arxiv.org/abs/2302.05442 and adapted modulation interface.
    """

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qk_scale: float | None = None,
        chroma_modulation = False,
    ):
        super().__init__()
        self.hidden_dim = hidden_size
        self.num_heads = num_heads
        self.chroma_modulation = chroma_modulation
        head_dim = hidden_size // num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
        # qkv and mlp_in
        self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
        # proj and mlp_out
        self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)

        self.norm = QKNorm(head_dim)

        self.hidden_size = hidden_size
        self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)

        self.mlp_act = nn.GELU(approximate="tanh")
        if not chroma_modulation:
            self.modulation = Modulation(hidden_size, double=False)

    def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
        if self.chroma_modulation:
            mod = vec
        else:
            mod, _ = self.modulation(vec)
        x_mod = self.pre_norm(x)
        x_mod.mul_(1 + mod.scale)
        x_mod.add_(mod.shift)

        ##### More spagheti VRAM optimizations done by DeepBeepMeep !
        # I am sure you are a nice person and as you copy this code, you will give me proper credits:
        # Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter  

        # x_mod = (1 + mod.scale) * x + mod.shift

        shape = (*x_mod.shape[:2], self.num_heads, int(x_mod.shape[-1] / self.num_heads) )
        q = self.linear1_attn_q(x_mod).view(*shape).transpose(1,2)
        k = self.linear1_attn_k(x_mod).view(*shape).transpose(1,2)
        v = self.linear1_attn_v(x_mod).view(*shape).transpose(1,2)

        q = self.norm(q, None, v)
        k = self.norm(None, k, v)

        # compute attention
        qkv_list = [q, k, v]
        del q, k, v
        attn = attention(qkv_list, pe=pe)
        # compute activation in mlp stream, cat again and run second linear layer

        x_mod_shape = x_mod.shape
        x_mod = x_mod.view(-1, x_mod.shape[-1])
        chunk_size = int(x_mod_shape[1]/6)
        x_chunks = torch.split(x_mod, chunk_size)
        attn = attn.view(-1, attn.shape[-1])
        attn_chunks =torch.split(attn, chunk_size)
        for x_chunk, attn_chunk in zip(x_chunks, attn_chunks):
            mlp_chunk = self.linear1_mlp(x_chunk)
            mlp_chunk = self.mlp_act(mlp_chunk)
            attn_mlp_chunk = torch.cat((attn_chunk, mlp_chunk), -1)
            del attn_chunk, mlp_chunk 
            x_chunk[...] = self.linear2(attn_mlp_chunk)
            del attn_mlp_chunk
        x_mod = x_mod.view(x_mod_shape)
        x.addcmul_(x_mod, mod.gate)
        return x


class LastLayer(nn.Module):
    def __init__(self, hidden_size: int, patch_size: int, out_channels: int, chroma_modulation = False):
        super().__init__()
        self.chroma_modulation = chroma_modulation
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
        if not chroma_modulation:        
            self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))

    def forward(self, x: Tensor, vec: Tensor) -> Tensor:
        if self.chroma_modulation:
            shift, scale = vec
            shift = shift.squeeze(1)
            scale = scale.squeeze(1)            
        else:
            shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
        # x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
        x = torch.addcmul(shift[:, None, :], 1 + scale[:, None, :], self.norm_final(x))
        x = self.linear(x)
        return x


class DistilledGuidance(nn.Module):
    def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers = 5):
        super().__init__()
        self.in_proj = nn.Linear(in_dim, hidden_dim, bias=True)
        self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim) for x in range( n_layers)])
        self.norms = nn.ModuleList([RMSNorm(hidden_dim) for x in range( n_layers)])
        self.out_proj = nn.Linear(hidden_dim, out_dim)


    def forward(self, x: Tensor) -> Tensor:
        x = self.in_proj(x)

        for layer, norms in zip(self.layers, self.norms):
            x = x + layer(norms(x))

        x = self.out_proj(x)

        return x
    

class SigLIPMultiFeatProjModel(torch.nn.Module):
    """
    SigLIP Multi-Feature Projection Model for processing style features from different layers 
    and projecting them into a unified hidden space.
    
    Args:
        siglip_token_nums (int): Number of SigLIP tokens, default 257
        style_token_nums (int): Number of style tokens, default 256  
        siglip_token_dims (int): Dimension of SigLIP tokens, default 1536
        hidden_size (int): Hidden layer size, default 3072
        context_layer_norm (bool): Whether to use context layer normalization, default False
    """
    
    def __init__(
        self,
        siglip_token_nums: int = 257,
        style_token_nums: int = 256,
        siglip_token_dims: int = 1536,
        hidden_size: int = 3072,
        context_layer_norm: bool = False,
    ):
        super().__init__()
        
        # High-level feature processing (layer -2)
        self.high_embedding_linear = nn.Sequential(
            nn.Linear(siglip_token_nums, style_token_nums), 
            nn.SiLU()
        )
        self.high_layer_norm = (
            nn.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity()
        )
        self.high_projection = nn.Linear(siglip_token_dims, hidden_size, bias=True)
        
        # Mid-level feature processing (layer -11)
        self.mid_embedding_linear = nn.Sequential(
            nn.Linear(siglip_token_nums, style_token_nums), 
            nn.SiLU()
        )
        self.mid_layer_norm = (
            nn.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity()
        )
        self.mid_projection = nn.Linear(siglip_token_dims, hidden_size, bias=True)
        
        # Low-level feature processing (layer -20)
        self.low_embedding_linear = nn.Sequential(
            nn.Linear(siglip_token_nums, style_token_nums), 
            nn.SiLU()
        )
        self.low_layer_norm = (
            nn.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity()
        )
        self.low_projection = nn.Linear(siglip_token_dims, hidden_size, bias=True)

    def forward(self, siglip_outputs):
        """
        Forward pass function
        
        Args:
            siglip_outputs: Output from SigLIP model, containing hidden_states
            
        Returns:
            torch.Tensor: Concatenated multi-layer features with shape [bs, 3*style_token_nums, hidden_size]
        """
        dtype = next(self.high_embedding_linear.parameters()).dtype
        
        # Process high-level features (layer -2)
        high_embedding = self._process_layer_features(
            siglip_outputs.hidden_states[-2],
            self.high_embedding_linear,
            self.high_layer_norm,
            self.high_projection,
            dtype
        )
        
        # Process mid-level features (layer -11)
        mid_embedding = self._process_layer_features(
            siglip_outputs.hidden_states[-11],
            self.mid_embedding_linear,
            self.mid_layer_norm,
            self.mid_projection,
            dtype
        )
        
        # Process low-level features (layer -20)
        low_embedding = self._process_layer_features(
            siglip_outputs.hidden_states[-20],
            self.low_embedding_linear,
            self.low_layer_norm,
            self.low_projection,
            dtype
        )
        
        # Concatenate features from all layers
        return torch.cat((high_embedding, mid_embedding, low_embedding), dim=1)
    
    def _process_layer_features(
        self, 
        hidden_states: torch.Tensor,
        embedding_linear: nn.Module,
        layer_norm: nn.Module,
        projection: nn.Module,
        dtype: torch.dtype
    ) -> torch.Tensor:
        """
        Helper function to process features from a single layer
        
        Args:
            hidden_states: Input hidden states [bs, seq_len, dim]
            embedding_linear: Embedding linear layer
            layer_norm: Layer normalization
            projection: Projection layer
            dtype: Target data type
            
        Returns:
            torch.Tensor: Processed features [bs, style_token_nums, hidden_size]
        """
        # Transform dimensions: [bs, seq_len, dim] -> [bs, dim, seq_len] -> [bs, dim, style_token_nums] -> [bs, style_token_nums, dim]
        embedding = embedding_linear(
            hidden_states.to(dtype).transpose(1, 2)
        ).transpose(1, 2)
        
        # Apply layer normalization
        embedding = layer_norm(embedding)
        
        # Project to target hidden space
        embedding = projection(embedding)
        
        return embedding