File size: 9,532 Bytes
2b67076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

from mmgp import offload
import inspect
from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import torch, json, os
import math

from diffusers.image_processor import VaeImageProcessor
from .transformer_qwenimage import QwenImageTransformer2DModel

from diffusers.utils import logging, replace_example_docstring
from diffusers.utils.torch_utils import randn_tensor
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, AutoTokenizer, Qwen2VLProcessor
from .autoencoder_kl_qwenimage import AutoencoderKLQwenImage
from diffusers import FlowMatchEulerDiscreteScheduler
from .pipeline_qwenimage import QwenImagePipeline
from PIL import Image
from shared.utils.utils import calculate_new_dimensions, convert_tensor_to_image
from shared.utils import files_locator as fl 

def stitch_images(img1, img2):
    # Resize img2 to match img1's height
    width1, height1 = img1.size
    width2, height2 = img2.size
    new_width2 = int(width2 * height1 / height2)
    img2_resized = img2.resize((new_width2, height1), Image.Resampling.LANCZOS)
    
    stitched = Image.new('RGB', (width1 + new_width2, height1))
    stitched.paste(img1, (0, 0))
    stitched.paste(img2_resized, (width1, 0))
    return stitched

class model_factory():
    def __init__(
        self,
        checkpoint_dir,
        model_filename = None,
        model_type = None, 
        model_def = None,
        base_model_type = None,
        text_encoder_filename = None,
        quantizeTransformer = False,
        save_quantized = False,
        dtype = torch.bfloat16,
        VAE_dtype = torch.float32,
        mixed_precision_transformer = False,
    ):
    

        transformer_filename = model_filename[0]
        processor = None
        tokenizer = None
        if base_model_type in ["qwen_image_edit_20B", "qwen_image_edit_plus_20B"]:
            processor = Qwen2VLProcessor.from_pretrained(os.path.join(checkpoint_dir,"Qwen2.5-VL-7B-Instruct"))
        tokenizer = AutoTokenizer.from_pretrained(os.path.join(checkpoint_dir,"Qwen2.5-VL-7B-Instruct"))
        self.base_model_type = base_model_type

        base_config_file = "models/qwen/configs/qwen_image_20B.json" 
        with open(base_config_file, 'r', encoding='utf-8') as f:
            transformer_config = json.load(f)
        transformer_config.pop("_diffusers_version")
        transformer_config.pop("_class_name")
        transformer_config.pop("pooled_projection_dim")
        
        from accelerate import init_empty_weights
        with init_empty_weights():
            transformer = QwenImageTransformer2DModel(**transformer_config)
        source =  model_def.get("source", None)

        if source is not None:
            offload.load_model_data(transformer, source)
        else:
            offload.load_model_data(transformer, transformer_filename)
        # transformer = offload.fast_load_transformers_model("transformer_quanto.safetensors", writable_tensors= True , modelClass=QwenImageTransformer2DModel, defaultConfigPath="transformer_config.json")

        if not source is None:
            from wgp import save_model
            save_model(transformer, model_type, dtype, None)

        if save_quantized:
            from wgp import save_quantized_model
            save_quantized_model(transformer, model_type, model_filename[0], dtype, base_config_file)

        text_encoder = offload.fast_load_transformers_model(text_encoder_filename,  writable_tensors= True , modelClass=Qwen2_5_VLForConditionalGeneration,  defaultConfigPath= os.path.join(checkpoint_dir, "Qwen2.5-VL-7B-Instruct", "config.json"))
        # text_encoder = offload.fast_load_transformers_model(text_encoder_filename, do_quantize=True,  writable_tensors= True , modelClass=Qwen2_5_VLForConditionalGeneration, defaultConfigPath="text_encoder_config.json", verboseLevel=2)
        # text_encoder.to(torch.float16)
        # offload.save_model(text_encoder, "text_encoder_quanto_fp16.safetensors", do_quantize= True)

        vae = offload.fast_load_transformers_model( os.path.join(checkpoint_dir,"qwen_vae.safetensors"), writable_tensors= True , modelClass=AutoencoderKLQwenImage, defaultConfigPath=os.path.join(checkpoint_dir,"qwen_vae_config.json"))
        
        self.pipeline = QwenImagePipeline(vae, text_encoder, tokenizer, transformer, processor)
        self.vae=vae
        self.text_encoder=text_encoder
        self.tokenizer=tokenizer
        self.transformer=transformer
        self.processor = processor

    def generate(
        self,
        seed: int | None = None,
        input_prompt: str = "replace the logo with the text 'Black Forest Labs'",
        n_prompt = None,
        sampling_steps: int = 20,
        input_ref_images = None,
        input_frames= None,
        input_masks= None,
        width= 832,
        height=480,
        guide_scale: float = 4,
        fit_into_canvas = None,
        callback = None,
        loras_slists = None,
        batch_size = 1,
        video_prompt_type = "",
        VAE_tile_size = None, 
        joint_pass = True,
        sample_solver='default',
        denoising_strength = 1.,
        model_mode = 0,
        outpainting_dims = None,
        **bbargs
    ):
        # Generate with different aspect ratios
        aspect_ratios = {
        "1:1": (1328, 1328),
        "16:9": (1664, 928),
        "9:16": (928, 1664),
        "4:3": (1472, 1140),
        "3:4": (1140, 1472)
        }
        

        if sample_solver =='lightning':
            scheduler_config = {
                "base_image_seq_len": 256,
                "base_shift": math.log(3),  # We use shift=3 in distillation
                "invert_sigmas": False,
                "max_image_seq_len": 8192,
                "max_shift": math.log(3),  # We use shift=3 in distillation
                "num_train_timesteps": 1000,
                "shift": 1.0,
                "shift_terminal": None,  # set shift_terminal to None
                "stochastic_sampling": False,
                "time_shift_type": "exponential",
                "use_beta_sigmas": False,
                "use_dynamic_shifting": True,
                "use_exponential_sigmas": False,
                "use_karras_sigmas": False,
            }
        else:
            scheduler_config = {
                "base_image_seq_len": 256,
                "base_shift": 0.5,
                "invert_sigmas": False,
                "max_image_seq_len": 8192,
                "max_shift": 0.9,
                "num_train_timesteps": 1000,
                "shift": 1.0,
                "shift_terminal": 0.02,
                "stochastic_sampling": False,
                "time_shift_type": "exponential",
                "use_beta_sigmas": False,
                "use_dynamic_shifting": True,
                "use_exponential_sigmas": False,
                "use_karras_sigmas": False
            }

        self.scheduler=FlowMatchEulerDiscreteScheduler(**scheduler_config)
        self.pipeline.scheduler = self.scheduler 
        if VAE_tile_size is not None:
            self.vae.use_tiling  = VAE_tile_size[0] 
            self.vae.tile_latent_min_height  = VAE_tile_size[1] 
            self.vae.tile_latent_min_width  = VAE_tile_size[1]

        qwen_edit_plus = self.base_model_type in ["qwen_image_edit_plus_20B"]
        self.vae.enable_slicing()
        # width, height = aspect_ratios["16:9"]

        if n_prompt is None or len(n_prompt) == 0:
            n_prompt=  "text, watermark, copyright, blurry, low resolution"

        image_mask = None if input_masks is None else convert_tensor_to_image(input_masks, mask_levels= True) 
        if input_frames is not None:
            input_ref_images = [convert_tensor_to_image(input_frames) ] +  ([] if input_ref_images  is None else input_ref_images )

        if input_ref_images is not None:
            # image stiching method
            stiched = input_ref_images[0]
            if "K" in video_prompt_type :
                w, h = input_ref_images[0].size
                height, width = calculate_new_dimensions(height, width, h, w, fit_into_canvas)

            if not qwen_edit_plus:
                for new_img in input_ref_images[1:]:
                    stiched = stitch_images(stiched, new_img)
                input_ref_images  = [stiched]

        image = self.pipeline(
            prompt=input_prompt,
            negative_prompt=n_prompt,
            image = input_ref_images,
            image_mask = image_mask,
            width=width,
            height=height,
            num_inference_steps=sampling_steps,
            num_images_per_prompt = batch_size,
            true_cfg_scale=guide_scale,
            callback = callback,
            pipeline=self,
            loras_slists=loras_slists,
            joint_pass = joint_pass,
            denoising_strength=denoising_strength,
            generator=torch.Generator(device="cuda").manual_seed(seed),
            lora_inpaint = image_mask is not None and model_mode == 1,
            outpainting_dims = outpainting_dims,
            qwen_edit_plus = qwen_edit_plus,
        )      
        if image is None: return None
        return image.transpose(0, 1)

    def get_loras_transformer(self, get_model_recursive_prop, model_type, model_mode, **kwargs):
        if model_mode == 0: return [], []
        preloadURLs = get_model_recursive_prop(model_type,  "preload_URLs")
        if len(preloadURLs) == 0: return [], []
        return [ fl.locate_file(os.path.basename(preloadURLs[0]))] , [1]