File size: 16,490 Bytes
2b67076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import subprocess
import tempfile, os
import ffmpeg
import torchvision.transforms.functional as TF
import torch.nn.functional as F
import cv2
import tempfile
import imageio
import binascii
import torchvision
import torch
from PIL import Image
import os.path as osp
import json

def rand_name(length=8, suffix=''):
    name = binascii.b2a_hex(os.urandom(length)).decode('utf-8')
    if suffix:
        if not suffix.startswith('.'):
            suffix = '.' + suffix
        name += suffix
    return name



def extract_audio_tracks(source_video, verbose=False, query_only=False):
    """
    Extract all audio tracks from a source video into temporary AAC files.

    Returns:
        Tuple:
          - List of temp file paths for extracted audio tracks
          - List of corresponding metadata dicts:
              {'codec', 'sample_rate', 'channels', 'duration', 'language'}
              where 'duration' is set to container duration (for consistency).
    """
    probe = ffmpeg.probe(source_video)
    audio_streams = [s for s in probe['streams'] if s['codec_type'] == 'audio']
    container_duration = float(probe['format'].get('duration', 0.0))

    if not audio_streams:
        if query_only: return 0
        if verbose: print(f"No audio track found in {source_video}")
        return [], []

    if query_only:
        return len(audio_streams)

    if verbose:
        print(f"Found {len(audio_streams)} audio track(s), container duration = {container_duration:.3f}s")

    file_paths = []
    metadata = []

    for i, stream in enumerate(audio_streams):
        fd, temp_path = tempfile.mkstemp(suffix=f'_track{i}.aac', prefix='audio_')
        os.close(fd)

        file_paths.append(temp_path)
        metadata.append({
            'codec': stream.get('codec_name'),
            'sample_rate': int(stream.get('sample_rate', 0)),
            'channels': int(stream.get('channels', 0)),
            'duration': container_duration,
            'language': stream.get('tags', {}).get('language', None)
        })

        ffmpeg.input(source_video).output(
            temp_path,
            **{f'map': f'0:a:{i}', 'acodec': 'aac', 'b:a': '128k'}
        ).overwrite_output().run(quiet=not verbose)

    return file_paths, metadata



def combine_and_concatenate_video_with_audio_tracks(
    save_path_tmp, video_path,
    source_audio_tracks, new_audio_tracks,
    source_audio_duration, audio_sampling_rate,
    new_audio_from_start=False,
    source_audio_metadata=None,
    audio_bitrate='128k',
    audio_codec='aac',
    verbose = False
):
    inputs, filters, maps, idx = ['-i', video_path], [], ['-map', '0:v'], 1
    metadata_args = []
    sources = source_audio_tracks or []
    news = new_audio_tracks or []

    duplicate_source = len(sources) == 1 and len(news) > 1
    N = len(news) if source_audio_duration == 0 else max(len(sources), len(news)) or 1

    for i in range(N):
        s = (sources[i] if i < len(sources)
             else sources[0] if duplicate_source else None)
        n = news[i] if len(news) == N else (news[0] if news else None)

        if source_audio_duration == 0:
            if n:
                inputs += ['-i', n]
                filters.append(f'[{idx}:a]apad=pad_dur=100[aout{i}]')
                idx += 1
            else:
                filters.append(f'anullsrc=r={audio_sampling_rate}:cl=mono,apad=pad_dur=100[aout{i}]')
        else:
            if s:
                inputs += ['-i', s]
                meta = source_audio_metadata[i] if source_audio_metadata and i < len(source_audio_metadata) else {}
                needs_filter = (
                    meta.get('codec') != audio_codec or
                    meta.get('sample_rate') != audio_sampling_rate or
                    meta.get('channels') != 1 or
                    meta.get('duration', 0) < source_audio_duration
                )
                if needs_filter:
                    filters.append(
                        f'[{idx}:a]aresample={audio_sampling_rate},aformat=channel_layouts=mono,'
                        f'apad=pad_dur={source_audio_duration},atrim=0:{source_audio_duration},asetpts=PTS-STARTPTS[s{i}]')
                else:
                    filters.append(
                        f'[{idx}:a]apad=pad_dur={source_audio_duration},atrim=0:{source_audio_duration},asetpts=PTS-STARTPTS[s{i}]')
                if lang := meta.get('language'):
                    metadata_args += ['-metadata:s:a:' + str(i), f'language={lang}']
                idx += 1
            else:
                filters.append(
                    f'anullsrc=r={audio_sampling_rate}:cl=mono,atrim=0:{source_audio_duration},asetpts=PTS-STARTPTS[s{i}]')

            if n:
                inputs += ['-i', n]
                start = '0' if new_audio_from_start else source_audio_duration
                filters.append(
                    f'[{idx}:a]aresample={audio_sampling_rate},aformat=channel_layouts=mono,'
                    f'atrim=start={start},asetpts=PTS-STARTPTS[n{i}]')
                filters.append(f'[s{i}][n{i}]concat=n=2:v=0:a=1[aout{i}]')
                idx += 1
            else:
                filters.append(f'[s{i}]apad=pad_dur=100[aout{i}]')

        maps += ['-map', f'[aout{i}]']

    cmd = ['ffmpeg', '-y', *inputs,
           '-filter_complex', ';'.join(filters),  # ✅ Only change made
           *maps, *metadata_args,
           '-c:v', 'copy',
           '-c:a', audio_codec,
           '-b:a', audio_bitrate,
           '-ar', str(audio_sampling_rate),
           '-ac', '1',
           '-shortest', save_path_tmp]

    if verbose:
        print(f"ffmpeg command: {cmd}")
    try:
        subprocess.run(cmd, check=True, capture_output=True, text=True)
    except subprocess.CalledProcessError as e:
        raise Exception(f"FFmpeg error: {e.stderr}")


def combine_video_with_audio_tracks(target_video, audio_tracks, output_video,
                                     audio_metadata=None, verbose=False):
    if not audio_tracks:
        if verbose: print("No audio tracks to combine."); return False

    dur = float(next(s for s in ffmpeg.probe(target_video)['streams']
                     if s['codec_type'] == 'video')['duration'])
    if verbose: print(f"Video duration: {dur:.3f}s")

    cmd = ['ffmpeg', '-y', '-i', target_video]
    for path in audio_tracks:
        cmd += ['-i', path]

    cmd += ['-map', '0:v']
    for i in range(len(audio_tracks)):
        cmd += ['-map', f'{i+1}:a']

    for i, meta in enumerate(audio_metadata or []):
        if (lang := meta.get('language')):
            cmd += ['-metadata:s:a:' + str(i), f'language={lang}']

    cmd += ['-c:v', 'copy', '-c:a', 'copy', '-t', str(dur), output_video]

    result = subprocess.run(cmd, capture_output=not verbose, text=True)
    if result.returncode != 0:
        raise Exception(f"FFmpeg error:\n{result.stderr}")
    if verbose:
        print(f"Created {output_video} with {len(audio_tracks)} audio track(s)")
    return True


def cleanup_temp_audio_files(audio_tracks, verbose=False):
    """
    Clean up temporary audio files.
    
    Args:
        audio_tracks: List of audio file paths to delete
        verbose: Enable verbose output (default: False)
        
    Returns:
        Number of files successfully deleted
    """
    deleted_count = 0
    
    for audio_path in audio_tracks:
        try:
            if os.path.exists(audio_path):
                os.unlink(audio_path)
                deleted_count += 1
                if verbose:
                    print(f"Cleaned up {audio_path}")
        except PermissionError:
            print(f"Warning: Could not delete {audio_path} (file may be in use)")
        except Exception as e:
            print(f"Warning: Error deleting {audio_path}: {e}")
    
    if verbose and deleted_count > 0:
        print(f"Successfully deleted {deleted_count} temporary audio file(s)")
    
    return deleted_count


def save_video(tensor,
                save_file=None,
                fps=30,
                codec_type='libx264_8',
                container='mp4',
                nrow=8,
                normalize=True,
                value_range=(-1, 1),
                retry=5):
    """Save tensor as video with configurable codec and container options."""
        
    if torch.is_tensor(tensor) and len(tensor.shape) == 4:
        tensor = tensor.unsqueeze(0)
        
    suffix = f'.{container}'
    cache_file = osp.join('/tmp', rand_name(suffix=suffix)) if save_file is None else save_file
    if not cache_file.endswith(suffix):
        cache_file = osp.splitext(cache_file)[0] + suffix
    
    # Configure codec parameters
    codec_params = _get_codec_params(codec_type, container)
    
    # Process and save
    error = None
    for _ in range(retry):
        try:
            if torch.is_tensor(tensor):
                # Preprocess tensor
                tensor = tensor.clamp(min(value_range), max(value_range))
                tensor = torch.stack([
                    torchvision.utils.make_grid(u, nrow=nrow, normalize=normalize, value_range=value_range)
                    for u in tensor.unbind(2)
                ], dim=1).permute(1, 2, 3, 0)
                tensor = (tensor * 255).type(torch.uint8).cpu()
                arrays = tensor.numpy()
            else:
                arrays = tensor

            # Write video (silence ffmpeg logs)
            writer = imageio.get_writer(cache_file, fps=fps, ffmpeg_log_level='error', **codec_params)
            for frame in arrays:
                writer.append_data(frame)
        
            writer.close()
            return cache_file
            
        except Exception as e:
            error = e
            print(f"error saving {save_file}: {e}")


def _get_codec_params(codec_type, container):
    """Get codec parameters based on codec type and container."""
    if codec_type == 'libx264_8':
        return {'codec': 'libx264', 'quality': 8, 'pixelformat': 'yuv420p'}
    elif codec_type == 'libx264_10':
        return {'codec': 'libx264', 'quality': 10, 'pixelformat': 'yuv420p'}
    elif codec_type == 'libx265_28':
        return {'codec': 'libx265', 'pixelformat': 'yuv420p', 'output_params': ['-crf', '28', '-x265-params', 'log-level=none','-hide_banner', '-nostats']}
    elif codec_type == 'libx265_8':
        return {'codec': 'libx265', 'pixelformat': 'yuv420p', 'output_params': ['-crf', '8', '-x265-params', 'log-level=none','-hide_banner', '-nostats']}
    elif codec_type == 'libx264_lossless':
        if container == 'mkv':
            return {'codec': 'ffv1', 'pixelformat': 'rgb24'}
        else:  # mp4
            return {'codec': 'libx264', 'output_params': ['-crf', '0'], 'pixelformat': 'yuv444p'}
    else:  # libx264
        return {'codec': 'libx264', 'pixelformat': 'yuv420p'}




def save_image(tensor,
                save_file,
                nrow=8,
                normalize=True,
                value_range=(-1, 1),
                quality='jpeg_95',  # 'jpeg_95', 'jpeg_85', 'jpeg_70', 'jpeg_50', 'webp_95', 'webp_85', 'webp_70', 'webp_50', 'png', 'webp_lossless'
                retry=5):
    """Save tensor as image with configurable format and quality."""
    
    # Get format and quality settings
    format_info = _get_format_info(quality)
    
    # Rename file extension to match requested format
    save_file = osp.splitext(save_file)[0] + format_info['ext']
    
    # Save image
    error = None
    for _ in range(retry):
        try:
            tensor = tensor.clamp(min(value_range), max(value_range))
            
            if format_info['use_pil']:
                # Use PIL for WebP and advanced options
                grid = torchvision.utils.make_grid(tensor, nrow=nrow, normalize=normalize, value_range=value_range)
                # Convert to PIL Image
                grid = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
                img = Image.fromarray(grid)
                img.save(save_file, **format_info['params'])
            else:
                # Use torchvision for JPEG and PNG
                torchvision.utils.save_image(
                    tensor, save_file, nrow=nrow, normalize=normalize, 
                    value_range=value_range, **format_info['params']
                )
            break
        except Exception as e:
            error = e
            continue
    else:
        print(f'cache_image failed, error: {error}', flush=True)
    
    return save_file


def _get_format_info(quality):
    """Get format extension and parameters."""
    formats = {
        # JPEG with PIL (so 'quality' works)
        'jpeg_95': {'ext': '.jpg', 'params': {'quality': 95}, 'use_pil': True},
        'jpeg_85': {'ext': '.jpg', 'params': {'quality': 85}, 'use_pil': True},
        'jpeg_70': {'ext': '.jpg', 'params': {'quality': 70}, 'use_pil': True},
        'jpeg_50': {'ext': '.jpg', 'params': {'quality': 50}, 'use_pil': True},

        # PNG with torchvision
        'png': {'ext': '.png', 'params': {}, 'use_pil': False},

        # WebP with PIL (for quality control)
        'webp_95': {'ext': '.webp', 'params': {'quality': 95}, 'use_pil': True},
        'webp_85': {'ext': '.webp', 'params': {'quality': 85}, 'use_pil': True},
        'webp_70': {'ext': '.webp', 'params': {'quality': 70}, 'use_pil': True},
        'webp_50': {'ext': '.webp', 'params': {'quality': 50}, 'use_pil': True},
        'webp_lossless': {'ext': '.webp', 'params': {'lossless': True}, 'use_pil': True},
    }
    return formats.get(quality, formats['jpeg_95'])


from PIL import Image, PngImagePlugin

def _enc_uc(s):
    try: return b"ASCII\0\0\0" + s.encode("ascii")
    except UnicodeEncodeError: return b"UNICODE\0" + s.encode("utf-16le")

def _dec_uc(b):
    if not isinstance(b, (bytes, bytearray)):
        try: b = bytes(b)
        except Exception: return None
    if b.startswith(b"ASCII\0\0\0"): return b[8:].decode("ascii", "ignore")
    if b.startswith(b"UNICODE\0"):   return b[8:].decode("utf-16le", "ignore")
    return b.decode("utf-8", "ignore")

def save_image_metadata(image_path, metadata_dict, **save_kwargs):
    try:
        j = json.dumps(metadata_dict, ensure_ascii=False)
        ext = os.path.splitext(image_path)[1].lower()
        with Image.open(image_path) as im:
            if ext == ".png":
                pi = PngImagePlugin.PngInfo(); pi.add_text("comment", j)
                im.save(image_path, pnginfo=pi, **save_kwargs); return True
            if ext in (".jpg", ".jpeg"):
                im.save(image_path, comment=j.encode("utf-8"), **save_kwargs); return True
            if ext == ".webp":
                import piexif
                exif = {"0th":{}, "Exif":{piexif.ExifIFD.UserComment:_enc_uc(j)}, "GPS":{}, "1st":{}, "thumbnail":None}
                im.save(image_path, format="WEBP", exif=piexif.dump(exif), **save_kwargs); return True
            raise ValueError("Unsupported format")
    except Exception as e:
        print(f"Error saving metadata: {e}"); return False

def read_image_metadata(image_path):
    try:
        ext = os.path.splitext(image_path)[1].lower()
        with Image.open(image_path) as im:
            if ext == ".png":
                val = (getattr(im, "text", {}) or {}).get("comment") or im.info.get("comment")
                return json.loads(val) if val else None
            if ext in (".jpg", ".jpeg"):
                val = im.info.get("comment")
                if isinstance(val, (bytes, bytearray)): val = val.decode("utf-8", "ignore")
                if val:
                    try: return json.loads(val)
                    except Exception: pass
                exif = getattr(im, "getexif", lambda: None)()
                if exif:
                    uc = exif.get(37510)  # UserComment
                    s = _dec_uc(uc) if uc else None
                    if s:
                        try: return json.loads(s)
                        except Exception: pass
                return None
            if ext == ".webp":
                exif_bytes = Image.open(image_path).info.get("exif")
                if not exif_bytes: return None
                import piexif
                uc = piexif.load(exif_bytes).get("Exif", {}).get(piexif.ExifIFD.UserComment)
                s = _dec_uc(uc) if uc else None
                return json.loads(s) if s else None
            return None
    except Exception as e:
        print(f"Error reading metadata: {e}"); return None