Spaces:
Configuration error
Configuration error
| import math | |
| from dataclasses import dataclass | |
| import torch | |
| from einops import rearrange | |
| from torch import Tensor, nn | |
| from ..math import attention, rope | |
| def get_linear_split_map(): | |
| hidden_size = 3072 | |
| split_linear_modules_map = { | |
| "qkv" : {"mapped_modules" : ["q", "k", "v"] , "split_sizes": [hidden_size, hidden_size, hidden_size]}, | |
| "linear1" : {"mapped_modules" : ["linear1_attn_q", "linear1_attn_k", "linear1_attn_v", "linear1_mlp"] , "split_sizes": [hidden_size, hidden_size, hidden_size, 7*hidden_size- 3*hidden_size]}, | |
| "linear1_qkv" : {"mapped_modules" : ["linear1_attn_q", "linear1_attn_k", "linear1_attn_v"] , "split_sizes": [hidden_size, hidden_size, hidden_size]}, | |
| } | |
| return split_linear_modules_map | |
| class EmbedND(nn.Module): | |
| def __init__(self, dim: int, theta: int, axes_dim: list[int]): | |
| super().__init__() | |
| self.dim = dim | |
| self.theta = theta | |
| self.axes_dim = axes_dim | |
| def forward(self, ids: Tensor) -> Tensor: | |
| n_axes = ids.shape[-1] | |
| emb = torch.cat( | |
| [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], | |
| dim=-3, | |
| ) | |
| return emb.unsqueeze(1) | |
| def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| :param t: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| :param dim: the dimension of the output. | |
| :param max_period: controls the minimum frequency of the embeddings. | |
| :return: an (N, D) Tensor of positional embeddings. | |
| """ | |
| t = time_factor * t | |
| half = dim // 2 | |
| freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( | |
| t.device | |
| ) | |
| args = t[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
| if torch.is_floating_point(t): | |
| embedding = embedding.to(t) | |
| return embedding | |
| class MLPEmbedder(nn.Module): | |
| def __init__(self, in_dim: int, hidden_dim: int): | |
| super().__init__() | |
| self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) | |
| self.silu = nn.SiLU() | |
| self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) | |
| def forward(self, x: Tensor) -> Tensor: | |
| return self.out_layer(self.silu(self.in_layer(x))) | |
| class RMSNorm(torch.nn.Module): | |
| def __init__(self, dim: int): | |
| super().__init__() | |
| self.scale = nn.Parameter(torch.ones(dim)) | |
| def forward(self, x: Tensor): | |
| x_dtype = x.dtype | |
| x = x.float() | |
| rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) | |
| return (x * rrms).to(dtype=x_dtype) * self.scale | |
| class QKNorm(torch.nn.Module): | |
| def __init__(self, dim: int): | |
| super().__init__() | |
| self.query_norm = RMSNorm(dim) | |
| self.key_norm = RMSNorm(dim) | |
| def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: | |
| if k != None: | |
| return self.key_norm(k).to(v) | |
| else: | |
| return self.query_norm(q).to(v) | |
| # q = self.query_norm(q) | |
| # k = self.key_norm(k) | |
| # return q.to(v), k.to(v) | |
| class SelfAttention(nn.Module): | |
| def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.norm = QKNorm(head_dim) | |
| self.proj = nn.Linear(dim, dim) | |
| def forward(self, x: Tensor, pe: Tensor) -> Tensor: | |
| raise Exception("not implemented") | |
| class ModulationOut: | |
| shift: Tensor | |
| scale: Tensor | |
| gate: Tensor | |
| class ChromaModulationOut(ModulationOut): | |
| def from_offset(cls, tensor: torch.Tensor, offset: int = 0): | |
| return cls( | |
| shift=tensor[:, offset : offset + 1, :], | |
| scale=tensor[:, offset + 1 : offset + 2, :], | |
| gate=tensor[:, offset + 2 : offset + 3, :], | |
| ) | |
| def split_mlp(mlp, x, divide = 8): | |
| x_shape = x.shape | |
| x = x.view(-1, x.shape[-1]) | |
| chunk_size = int(x.shape[0]/divide) | |
| chunk_size = int(x_shape[1]/divide) | |
| x_chunks = torch.split(x, chunk_size) | |
| for i, x_chunk in enumerate(x_chunks): | |
| mlp_chunk = mlp[0](x_chunk) | |
| mlp_chunk = mlp[1](mlp_chunk) | |
| x_chunk[...] = mlp[2](mlp_chunk) | |
| return x.reshape(x_shape) | |
| class Modulation(nn.Module): | |
| def __init__(self, dim: int, double: bool): | |
| super().__init__() | |
| self.is_double = double | |
| self.multiplier = 6 if double else 3 | |
| self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) | |
| def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: | |
| out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) | |
| return ( | |
| ModulationOut(*out[:3]), | |
| ModulationOut(*out[3:]) if self.is_double else None, | |
| ) | |
| class DoubleStreamBlock(nn.Module): | |
| def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, chroma_modulation = False): | |
| super().__init__() | |
| mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
| self.num_heads = num_heads | |
| self.hidden_size = hidden_size | |
| self.chroma_modulation = chroma_modulation | |
| if not chroma_modulation: | |
| self.img_mod = Modulation(hidden_size, double=True) | |
| self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | |
| self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| self.img_mlp = nn.Sequential( | |
| nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
| nn.GELU(approximate="tanh"), | |
| nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
| ) | |
| if not chroma_modulation: | |
| self.txt_mod = Modulation(hidden_size, double=True) | |
| self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | |
| self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| self.txt_mlp = nn.Sequential( | |
| nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
| nn.GELU(approximate="tanh"), | |
| nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
| ) | |
| def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]: | |
| if self.chroma_modulation: | |
| (img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec | |
| else: | |
| img_mod1, img_mod2 = self.img_mod(vec) | |
| txt_mod1, txt_mod2 = self.txt_mod(vec) | |
| # prepare image for attention | |
| img_modulated = self.img_norm1(img) | |
| img_modulated.mul_(1 + img_mod1.scale) | |
| img_modulated.add_(img_mod1.shift) | |
| shape = (*img_modulated.shape[:2], self.num_heads, int(img_modulated.shape[-1] / self.num_heads) ) | |
| img_q = self.img_attn.q(img_modulated).view(*shape).transpose(1,2) | |
| img_k = self.img_attn.k(img_modulated).view(*shape).transpose(1,2) | |
| img_v = self.img_attn.v(img_modulated).view(*shape).transpose(1,2) | |
| del img_modulated | |
| img_q= self.img_attn.norm(img_q, None, img_v) | |
| img_k = self.img_attn.norm(None, img_k, img_v) | |
| # prepare txt for attention | |
| txt_modulated = self.txt_norm1(txt) | |
| txt_modulated.mul_(1 + txt_mod1.scale) | |
| txt_modulated.add_(txt_mod1.shift) | |
| shape = (*txt_modulated.shape[:2], self.num_heads, int(txt_modulated.shape[-1] / self.num_heads) ) | |
| txt_q = self.txt_attn.q(txt_modulated).view(*shape).transpose(1,2) | |
| txt_k = self.txt_attn.k(txt_modulated).view(*shape).transpose(1,2) | |
| txt_v = self.txt_attn.v(txt_modulated).view(*shape).transpose(1,2) | |
| del txt_modulated | |
| txt_q = self.txt_attn.norm(txt_q, None, txt_v) | |
| txt_k = self.txt_attn.norm(None, txt_k, txt_v) | |
| # run actual attention | |
| q = torch.cat((txt_q, img_q), dim=2) | |
| del txt_q, img_q | |
| k = torch.cat((txt_k, img_k), dim=2) | |
| del txt_k, img_k | |
| v = torch.cat((txt_v, img_v), dim=2) | |
| del txt_v, img_v | |
| qkv_list = [q, k, v] | |
| del q, k, v | |
| attn = attention(qkv_list, pe=pe) | |
| txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] | |
| # calculate the img blocks | |
| img.addcmul_(self.img_attn.proj(img_attn), img_mod1.gate) | |
| mod_img = self.img_norm2(img) | |
| mod_img.mul_(1 + img_mod2.scale) | |
| mod_img.add_(img_mod2.shift) | |
| mod_img = split_mlp(self.img_mlp, mod_img) | |
| # mod_img = self.img_mlp(mod_img) | |
| img.addcmul_( mod_img, img_mod2.gate) | |
| mod_img = None | |
| # calculate the txt blocks | |
| txt.addcmul_(self.txt_attn.proj(txt_attn), txt_mod1.gate) | |
| txt.addcmul_(self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift), txt_mod2.gate) | |
| return img, txt | |
| class SingleStreamBlock(nn.Module): | |
| """ | |
| A DiT block with parallel linear layers as described in | |
| https://arxiv.org/abs/2302.05442 and adapted modulation interface. | |
| """ | |
| def __init__( | |
| self, | |
| hidden_size: int, | |
| num_heads: int, | |
| mlp_ratio: float = 4.0, | |
| qk_scale: float | None = None, | |
| chroma_modulation = False, | |
| ): | |
| super().__init__() | |
| self.hidden_dim = hidden_size | |
| self.num_heads = num_heads | |
| self.chroma_modulation = chroma_modulation | |
| head_dim = hidden_size // num_heads | |
| self.scale = qk_scale or head_dim**-0.5 | |
| self.mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
| # qkv and mlp_in | |
| self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) | |
| # proj and mlp_out | |
| self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) | |
| self.norm = QKNorm(head_dim) | |
| self.hidden_size = hidden_size | |
| self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| self.mlp_act = nn.GELU(approximate="tanh") | |
| if not chroma_modulation: | |
| self.modulation = Modulation(hidden_size, double=False) | |
| def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: | |
| if self.chroma_modulation: | |
| mod = vec | |
| else: | |
| mod, _ = self.modulation(vec) | |
| x_mod = self.pre_norm(x) | |
| x_mod.mul_(1 + mod.scale) | |
| x_mod.add_(mod.shift) | |
| ##### More spagheti VRAM optimizations done by DeepBeepMeep ! | |
| # I am sure you are a nice person and as you copy this code, you will give me proper credits: | |
| # Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter | |
| # x_mod = (1 + mod.scale) * x + mod.shift | |
| shape = (*x_mod.shape[:2], self.num_heads, int(x_mod.shape[-1] / self.num_heads) ) | |
| q = self.linear1_attn_q(x_mod).view(*shape).transpose(1,2) | |
| k = self.linear1_attn_k(x_mod).view(*shape).transpose(1,2) | |
| v = self.linear1_attn_v(x_mod).view(*shape).transpose(1,2) | |
| q = self.norm(q, None, v) | |
| k = self.norm(None, k, v) | |
| # compute attention | |
| qkv_list = [q, k, v] | |
| del q, k, v | |
| attn = attention(qkv_list, pe=pe) | |
| # compute activation in mlp stream, cat again and run second linear layer | |
| x_mod_shape = x_mod.shape | |
| x_mod = x_mod.view(-1, x_mod.shape[-1]) | |
| chunk_size = int(x_mod_shape[1]/6) | |
| x_chunks = torch.split(x_mod, chunk_size) | |
| attn = attn.view(-1, attn.shape[-1]) | |
| attn_chunks =torch.split(attn, chunk_size) | |
| for x_chunk, attn_chunk in zip(x_chunks, attn_chunks): | |
| mlp_chunk = self.linear1_mlp(x_chunk) | |
| mlp_chunk = self.mlp_act(mlp_chunk) | |
| attn_mlp_chunk = torch.cat((attn_chunk, mlp_chunk), -1) | |
| del attn_chunk, mlp_chunk | |
| x_chunk[...] = self.linear2(attn_mlp_chunk) | |
| del attn_mlp_chunk | |
| x_mod = x_mod.view(x_mod_shape) | |
| x.addcmul_(x_mod, mod.gate) | |
| return x | |
| class LastLayer(nn.Module): | |
| def __init__(self, hidden_size: int, patch_size: int, out_channels: int, chroma_modulation = False): | |
| super().__init__() | |
| self.chroma_modulation = chroma_modulation | |
| self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
| if not chroma_modulation: | |
| self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) | |
| def forward(self, x: Tensor, vec: Tensor) -> Tensor: | |
| if self.chroma_modulation: | |
| shift, scale = vec | |
| shift = shift.squeeze(1) | |
| scale = scale.squeeze(1) | |
| else: | |
| shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) | |
| # x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] | |
| x = torch.addcmul(shift[:, None, :], 1 + scale[:, None, :], self.norm_final(x)) | |
| x = self.linear(x) | |
| return x | |
| class DistilledGuidance(nn.Module): | |
| def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers = 5): | |
| super().__init__() | |
| self.in_proj = nn.Linear(in_dim, hidden_dim, bias=True) | |
| self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim) for x in range( n_layers)]) | |
| self.norms = nn.ModuleList([RMSNorm(hidden_dim) for x in range( n_layers)]) | |
| self.out_proj = nn.Linear(hidden_dim, out_dim) | |
| def forward(self, x: Tensor) -> Tensor: | |
| x = self.in_proj(x) | |
| for layer, norms in zip(self.layers, self.norms): | |
| x = x + layer(norms(x)) | |
| x = self.out_proj(x) | |
| return x | |
| class SigLIPMultiFeatProjModel(torch.nn.Module): | |
| """ | |
| SigLIP Multi-Feature Projection Model for processing style features from different layers | |
| and projecting them into a unified hidden space. | |
| Args: | |
| siglip_token_nums (int): Number of SigLIP tokens, default 257 | |
| style_token_nums (int): Number of style tokens, default 256 | |
| siglip_token_dims (int): Dimension of SigLIP tokens, default 1536 | |
| hidden_size (int): Hidden layer size, default 3072 | |
| context_layer_norm (bool): Whether to use context layer normalization, default False | |
| """ | |
| def __init__( | |
| self, | |
| siglip_token_nums: int = 257, | |
| style_token_nums: int = 256, | |
| siglip_token_dims: int = 1536, | |
| hidden_size: int = 3072, | |
| context_layer_norm: bool = False, | |
| ): | |
| super().__init__() | |
| # High-level feature processing (layer -2) | |
| self.high_embedding_linear = nn.Sequential( | |
| nn.Linear(siglip_token_nums, style_token_nums), | |
| nn.SiLU() | |
| ) | |
| self.high_layer_norm = ( | |
| nn.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity() | |
| ) | |
| self.high_projection = nn.Linear(siglip_token_dims, hidden_size, bias=True) | |
| # Mid-level feature processing (layer -11) | |
| self.mid_embedding_linear = nn.Sequential( | |
| nn.Linear(siglip_token_nums, style_token_nums), | |
| nn.SiLU() | |
| ) | |
| self.mid_layer_norm = ( | |
| nn.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity() | |
| ) | |
| self.mid_projection = nn.Linear(siglip_token_dims, hidden_size, bias=True) | |
| # Low-level feature processing (layer -20) | |
| self.low_embedding_linear = nn.Sequential( | |
| nn.Linear(siglip_token_nums, style_token_nums), | |
| nn.SiLU() | |
| ) | |
| self.low_layer_norm = ( | |
| nn.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity() | |
| ) | |
| self.low_projection = nn.Linear(siglip_token_dims, hidden_size, bias=True) | |
| def forward(self, siglip_outputs): | |
| """ | |
| Forward pass function | |
| Args: | |
| siglip_outputs: Output from SigLIP model, containing hidden_states | |
| Returns: | |
| torch.Tensor: Concatenated multi-layer features with shape [bs, 3*style_token_nums, hidden_size] | |
| """ | |
| dtype = next(self.high_embedding_linear.parameters()).dtype | |
| # Process high-level features (layer -2) | |
| high_embedding = self._process_layer_features( | |
| siglip_outputs.hidden_states[-2], | |
| self.high_embedding_linear, | |
| self.high_layer_norm, | |
| self.high_projection, | |
| dtype | |
| ) | |
| # Process mid-level features (layer -11) | |
| mid_embedding = self._process_layer_features( | |
| siglip_outputs.hidden_states[-11], | |
| self.mid_embedding_linear, | |
| self.mid_layer_norm, | |
| self.mid_projection, | |
| dtype | |
| ) | |
| # Process low-level features (layer -20) | |
| low_embedding = self._process_layer_features( | |
| siglip_outputs.hidden_states[-20], | |
| self.low_embedding_linear, | |
| self.low_layer_norm, | |
| self.low_projection, | |
| dtype | |
| ) | |
| # Concatenate features from all layers | |
| return torch.cat((high_embedding, mid_embedding, low_embedding), dim=1) | |
| def _process_layer_features( | |
| self, | |
| hidden_states: torch.Tensor, | |
| embedding_linear: nn.Module, | |
| layer_norm: nn.Module, | |
| projection: nn.Module, | |
| dtype: torch.dtype | |
| ) -> torch.Tensor: | |
| """ | |
| Helper function to process features from a single layer | |
| Args: | |
| hidden_states: Input hidden states [bs, seq_len, dim] | |
| embedding_linear: Embedding linear layer | |
| layer_norm: Layer normalization | |
| projection: Projection layer | |
| dtype: Target data type | |
| Returns: | |
| torch.Tensor: Processed features [bs, style_token_nums, hidden_size] | |
| """ | |
| # Transform dimensions: [bs, seq_len, dim] -> [bs, dim, seq_len] -> [bs, dim, style_token_nums] -> [bs, style_token_nums, dim] | |
| embedding = embedding_linear( | |
| hidden_states.to(dtype).transpose(1, 2) | |
| ).transpose(1, 2) | |
| # Apply layer normalization | |
| embedding = layer_norm(embedding) | |
| # Project to target hidden space | |
| embedding = projection(embedding) | |
| return embedding | |