Spaces:
Running
Running
File size: 36,071 Bytes
2b67076 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
import torch
import numpy as np
import gradio as gr
from shared.utils import files_locator as fl
def test_class_i2v(base_model_type):
return base_model_type in ["i2v", "i2v_2_2", "fun_inp_1.3B", "fun_inp", "flf2v_720p", "fantasy", "multitalk", "infinitetalk", "i2v_2_2_multitalk", "animate" ]
def text_oneframe_overlap(base_model_type):
return test_class_i2v(base_model_type) and not (test_multitalk(base_model_type) or base_model_type in ["animate"]) or test_wan_5B(base_model_type)
def test_class_1_3B(base_model_type):
return base_model_type in [ "vace_1.3B", "t2v_1.3B", "recam_1.3B","phantom_1.3B","fun_inp_1.3B"]
def test_multitalk(base_model_type):
return base_model_type in ["multitalk", "vace_multitalk_14B", "i2v_2_2_multitalk", "infinitetalk"]
def test_standin(base_model_type):
return base_model_type in ["standin", "vace_standin_14B"]
def test_lynx(base_model_type):
return base_model_type in ["lynx_lite", "vace_lynx_lite_14B", "lynx", "vace_lynx_14B"]
def test_wan_5B(base_model_type):
return base_model_type in ["ti2v_2_2", "lucy_edit"]
class family_handler():
@staticmethod
def query_supported_types():
return ["multitalk", "infinitetalk", "fantasy", "vace_14B", "vace_14B_2_2", "vace_multitalk_14B", "vace_standin_14B", "vace_lynx_14B",
"t2v_1.3B", "standin", "lynx_lite", "lynx", "t2v", "t2v_2_2", "vace_1.3B", "phantom_1.3B", "phantom_14B",
"recam_1.3B", "animate",
"i2v", "i2v_2_2", "i2v_2_2_multitalk", "ti2v_2_2", "lucy_edit", "flf2v_720p", "fun_inp_1.3B", "fun_inp"]
@staticmethod
def query_family_maps():
models_eqv_map = {
"flf2v_720p" : "i2v",
"t2v_1.3B" : "t2v",
"t2v_2_2" : "t2v",
"vace_standin_14B" : "vace_14B",
"vace_lynx_14B" : "vace_14B",
"vace_14B_2_2": "vace_14B",
}
models_comp_map = {
"vace_14B" : [ "vace_multitalk_14B", "vace_standin_14B", "vace_lynx_lite_14B", "vace_lynx_14B", "vace_14B_2_2"],
"t2v" : [ "vace_14B", "vace_1.3B" "vace_multitalk_14B", "vace_standin_14B", "vace_lynx_lite_14B", "vace_lynx_14B", "vace_14B_2_2", "t2v_1.3B", "phantom_1.3B","phantom_14B", "standin", "lynx_lite", "lynx"],
"i2v" : [ "fantasy", "multitalk", "flf2v_720p" ],
"i2v_2_2" : ["i2v_2_2_multitalk"],
"fantasy": ["multitalk"],
}
return models_eqv_map, models_comp_map
@staticmethod
def query_model_family():
return "wan"
@staticmethod
def query_family_infos():
return {"wan":(0, "Wan2.1"), "wan2_2":(1, "Wan2.2") }
@staticmethod
def set_cache_parameters(cache_type, base_model_type, model_def, inputs, skip_steps_cache):
i2v = test_class_i2v(base_model_type)
resolution = inputs["resolution"]
width, height = resolution.split("x")
pixels = int(width) * int(height)
if cache_type == "mag":
skip_steps_cache.update({
"magcache_thresh" : 0,
"magcache_K" : 2,
})
if base_model_type in ["t2v"] and "URLs2" in model_def:
def_mag_ratios = [1.00124, 1.00155, 0.99822, 0.99851, 0.99696, 0.99687, 0.99703, 0.99732, 0.9966, 0.99679, 0.99602, 0.99658, 0.99578, 0.99664, 0.99484, 0.9949, 0.99633, 0.996, 0.99659, 0.99683, 0.99534, 0.99549, 0.99584, 0.99577, 0.99681, 0.99694, 0.99563, 0.99554, 0.9944, 0.99473, 0.99594, 0.9964, 0.99466, 0.99461, 0.99453, 0.99481, 0.99389, 0.99365, 0.99391, 0.99406, 0.99354, 0.99361, 0.99283, 0.99278, 0.99268, 0.99263, 0.99057, 0.99091, 0.99125, 0.99126, 0.65523, 0.65252, 0.98808, 0.98852, 0.98765, 0.98736, 0.9851, 0.98535, 0.98311, 0.98339, 0.9805, 0.9806, 0.97776, 0.97771, 0.97278, 0.97286, 0.96731, 0.96728, 0.95857, 0.95855, 0.94385, 0.94385, 0.92118, 0.921, 0.88108, 0.88076, 0.80263, 0.80181]
elif base_model_type in ["i2v_2_2"]:
def_mag_ratios = [0.99191, 0.99144, 0.99356, 0.99337, 0.99326, 0.99285, 0.99251, 0.99264, 0.99393, 0.99366, 0.9943, 0.9943, 0.99276, 0.99288, 0.99389, 0.99393, 0.99274, 0.99289, 0.99316, 0.9931, 0.99379, 0.99377, 0.99268, 0.99271, 0.99222, 0.99227, 0.99175, 0.9916, 0.91076, 0.91046, 0.98931, 0.98933, 0.99087, 0.99088, 0.98852, 0.98855, 0.98895, 0.98896, 0.98806, 0.98808, 0.9871, 0.98711, 0.98613, 0.98618, 0.98434, 0.98435, 0.983, 0.98307, 0.98185, 0.98187, 0.98131, 0.98131, 0.9783, 0.97835, 0.97619, 0.9762, 0.97264, 0.9727, 0.97088, 0.97098, 0.96568, 0.9658, 0.96045, 0.96055, 0.95322, 0.95335, 0.94579, 0.94594, 0.93297, 0.93311, 0.91699, 0.9172, 0.89174, 0.89202, 0.8541, 0.85446, 0.79823, 0.79902]
elif test_wan_5B(base_model_type):
if inputs.get("image_start", None) is not None and inputs.get("video_source", None) is not None : # t2v
def_mag_ratios = [0.99505, 0.99389, 0.99441, 0.9957, 0.99558, 0.99551, 0.99499, 0.9945, 0.99534, 0.99548, 0.99468, 0.9946, 0.99463, 0.99458, 0.9946, 0.99453, 0.99408, 0.99404, 0.9945, 0.99441, 0.99409, 0.99398, 0.99403, 0.99397, 0.99382, 0.99377, 0.99349, 0.99343, 0.99377, 0.99378, 0.9933, 0.99328, 0.99303, 0.99301, 0.99217, 0.99216, 0.992, 0.99201, 0.99201, 0.99202, 0.99133, 0.99132, 0.99112, 0.9911, 0.99155, 0.99155, 0.98958, 0.98957, 0.98959, 0.98958, 0.98838, 0.98835, 0.98826, 0.98825, 0.9883, 0.98828, 0.98711, 0.98709, 0.98562, 0.98561, 0.98511, 0.9851, 0.98414, 0.98412, 0.98284, 0.98282, 0.98104, 0.98101, 0.97981, 0.97979, 0.97849, 0.97849, 0.97557, 0.97554, 0.97398, 0.97395, 0.97171, 0.97166, 0.96917, 0.96913, 0.96511, 0.96507, 0.96263, 0.96257, 0.95839, 0.95835, 0.95483, 0.95475, 0.94942, 0.94936, 0.9468, 0.94678, 0.94583, 0.94594, 0.94843, 0.94872, 0.96949, 0.97015]
else: # i2v
def_mag_ratios = [0.99512, 0.99559, 0.99559, 0.99561, 0.99595, 0.99577, 0.99512, 0.99512, 0.99546, 0.99534, 0.99543, 0.99531, 0.99496, 0.99491, 0.99504, 0.99499, 0.99444, 0.99449, 0.99481, 0.99481, 0.99435, 0.99435, 0.9943, 0.99431, 0.99411, 0.99406, 0.99373, 0.99376, 0.99413, 0.99405, 0.99363, 0.99359, 0.99335, 0.99331, 0.99244, 0.99243, 0.99229, 0.99229, 0.99239, 0.99236, 0.99163, 0.9916, 0.99149, 0.99151, 0.99191, 0.99192, 0.9898, 0.98981, 0.9899, 0.98987, 0.98849, 0.98849, 0.98846, 0.98846, 0.98861, 0.98861, 0.9874, 0.98738, 0.98588, 0.98589, 0.98539, 0.98534, 0.98444, 0.98439, 0.9831, 0.98309, 0.98119, 0.98118, 0.98001, 0.98, 0.97862, 0.97859, 0.97555, 0.97558, 0.97392, 0.97388, 0.97152, 0.97145, 0.96871, 0.9687, 0.96435, 0.96434, 0.96129, 0.96127, 0.95639, 0.95638, 0.95176, 0.95175, 0.94446, 0.94452, 0.93972, 0.93974, 0.93575, 0.9359, 0.93537, 0.93552, 0.96655, 0.96616]
elif test_class_1_3B(base_model_type): #text 1.3B
def_mag_ratios = [1.0124, 1.02213, 1.00166, 1.0041, 0.99791, 1.00061, 0.99682, 0.99762, 0.99634, 0.99685, 0.99567, 0.99586, 0.99416, 0.99422, 0.99578, 0.99575, 0.9957, 0.99563, 0.99511, 0.99506, 0.99535, 0.99531, 0.99552, 0.99549, 0.99541, 0.99539, 0.9954, 0.99536, 0.99489, 0.99485, 0.99518, 0.99514, 0.99484, 0.99478, 0.99481, 0.99479, 0.99415, 0.99413, 0.99419, 0.99416, 0.99396, 0.99393, 0.99388, 0.99386, 0.99349, 0.99349, 0.99309, 0.99304, 0.9927, 0.9927, 0.99228, 0.99226, 0.99171, 0.9917, 0.99137, 0.99135, 0.99068, 0.99063, 0.99005, 0.99003, 0.98944, 0.98942, 0.98849, 0.98849, 0.98758, 0.98757, 0.98644, 0.98643, 0.98504, 0.98503, 0.9836, 0.98359, 0.98202, 0.98201, 0.97977, 0.97978, 0.97717, 0.97718, 0.9741, 0.97411, 0.97003, 0.97002, 0.96538, 0.96541, 0.9593, 0.95933, 0.95086, 0.95089, 0.94013, 0.94019, 0.92402, 0.92414, 0.90241, 0.9026, 0.86821, 0.86868, 0.81838, 0.81939]#**(0.5)# In our papaer, we utilize the sqrt to smooth the ratio, which has little impact on the performance and can be deleted.
elif i2v:
if pixels >= 1280*720:
def_mag_ratios = [0.99428, 0.99498, 0.98588, 0.98621, 0.98273, 0.98281, 0.99018, 0.99023, 0.98911, 0.98917, 0.98646, 0.98652, 0.99454, 0.99456, 0.9891, 0.98909, 0.99124, 0.99127, 0.99102, 0.99103, 0.99215, 0.99212, 0.99515, 0.99515, 0.99576, 0.99572, 0.99068, 0.99072, 0.99097, 0.99097, 0.99166, 0.99169, 0.99041, 0.99042, 0.99201, 0.99198, 0.99101, 0.99101, 0.98599, 0.98603, 0.98845, 0.98844, 0.98848, 0.98851, 0.98862, 0.98857, 0.98718, 0.98719, 0.98497, 0.98497, 0.98264, 0.98263, 0.98389, 0.98393, 0.97938, 0.9794, 0.97535, 0.97536, 0.97498, 0.97499, 0.973, 0.97301, 0.96827, 0.96828, 0.96261, 0.96263, 0.95335, 0.9534, 0.94649, 0.94655, 0.93397, 0.93414, 0.91636, 0.9165, 0.89088, 0.89109, 0.8679, 0.86768]
else:
def_mag_ratios = [0.98783, 0.98993, 0.97559, 0.97593, 0.98311, 0.98319, 0.98202, 0.98225, 0.9888, 0.98878, 0.98762, 0.98759, 0.98957, 0.98971, 0.99052, 0.99043, 0.99383, 0.99384, 0.98857, 0.9886, 0.99065, 0.99068, 0.98845, 0.98847, 0.99057, 0.99057, 0.98957, 0.98961, 0.98601, 0.9861, 0.98823, 0.98823, 0.98756, 0.98759, 0.98808, 0.98814, 0.98721, 0.98724, 0.98571, 0.98572, 0.98543, 0.98544, 0.98157, 0.98165, 0.98411, 0.98413, 0.97952, 0.97953, 0.98149, 0.9815, 0.9774, 0.97742, 0.97825, 0.97826, 0.97355, 0.97361, 0.97085, 0.97087, 0.97056, 0.97055, 0.96588, 0.96587, 0.96113, 0.96124, 0.9567, 0.95681, 0.94961, 0.94969, 0.93973, 0.93988, 0.93217, 0.93224, 0.91878, 0.91896, 0.90955, 0.90954, 0.92617, 0.92616]
else: # text 14B
def_mag_ratios = [1.02504, 1.03017, 1.00025, 1.00251, 0.9985, 0.99962, 0.99779, 0.99771, 0.9966, 0.99658, 0.99482, 0.99476, 0.99467, 0.99451, 0.99664, 0.99656, 0.99434, 0.99431, 0.99533, 0.99545, 0.99468, 0.99465, 0.99438, 0.99434, 0.99516, 0.99517, 0.99384, 0.9938, 0.99404, 0.99401, 0.99517, 0.99516, 0.99409, 0.99408, 0.99428, 0.99426, 0.99347, 0.99343, 0.99418, 0.99416, 0.99271, 0.99269, 0.99313, 0.99311, 0.99215, 0.99215, 0.99218, 0.99215, 0.99216, 0.99217, 0.99163, 0.99161, 0.99138, 0.99135, 0.98982, 0.9898, 0.98996, 0.98995, 0.9887, 0.98866, 0.98772, 0.9877, 0.98767, 0.98765, 0.98573, 0.9857, 0.98501, 0.98498, 0.9838, 0.98376, 0.98177, 0.98173, 0.98037, 0.98035, 0.97678, 0.97677, 0.97546, 0.97543, 0.97184, 0.97183, 0.96711, 0.96708, 0.96349, 0.96345, 0.95629, 0.95625, 0.94926, 0.94929, 0.93964, 0.93961, 0.92511, 0.92504, 0.90693, 0.90678, 0.8796, 0.87945, 0.86111, 0.86189]
skip_steps_cache.def_mag_ratios = def_mag_ratios
else:
if i2v:
if pixels >= 1280*720:
coefficients= [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683]
else:
coefficients= [-3.02331670e+02, 2.23948934e+02, -5.25463970e+01, 5.87348440e+00, -2.01973289e-01]
else:
if test_class_1_3B(base_model_type):
coefficients= [2.39676752e+03, -1.31110545e+03, 2.01331979e+02, -8.29855975e+00, 1.37887774e-01]
else:
coefficients= [-5784.54975374, 5449.50911966, -1811.16591783, 256.27178429, -13.02252404]
skip_steps_cache.coefficients = coefficients
@staticmethod
def get_wan_text_encoder_filename(text_encoder_quantization):
text_encoder_filename = "umt5-xxl/models_t5_umt5-xxl-enc-bf16.safetensors"
if text_encoder_quantization =="int8":
text_encoder_filename = text_encoder_filename.replace("bf16", "quanto_int8")
return fl.locate_file(text_encoder_filename, True)
@staticmethod
def query_model_def(base_model_type, model_def):
extra_model_def = {}
if "URLs2" in model_def:
extra_model_def["no_steps_skipping"] = True
i2v = test_class_i2v(base_model_type)
extra_model_def["i2v_class"] = i2v
extra_model_def["multitalk_class"] = test_multitalk(base_model_type)
extra_model_def["standin_class"] = test_standin(base_model_type)
extra_model_def["lynx_class"] = test_lynx(base_model_type)
vace_class = base_model_type in ["vace_14B", "vace_14B_2_2", "vace_1.3B", "vace_multitalk_14B", "vace_standin_14B", "vace_lynx_14B"]
extra_model_def["vace_class"] = vace_class
if base_model_type in ["vace_multitalk_14B", "vace_standin_14B", "vace_lynx_14B"]:
extra_model_def["parent_model_type"] = "vace_14B"
group = "wan"
if base_model_type in ["t2v_2_2", "i2v_2_2", "vace_14B_2_2"]:
profiles_dir = "wan_2_2"
group = "wan2_2"
elif i2v:
profiles_dir = "wan_i2v"
elif test_wan_5B(base_model_type):
profiles_dir = "wan_2_2_5B"
group = "wan2_2"
elif test_class_1_3B(base_model_type):
profiles_dir = "wan_1.3B"
else:
profiles_dir = "wan"
extra_model_def["profiles_dir"] = [profiles_dir]
extra_model_def["group"] = group
if base_model_type in ["animate"]:
fps = 30
elif test_multitalk(base_model_type):
fps = 25
elif base_model_type in ["fantasy"]:
fps = 23
elif test_wan_5B(base_model_type):
fps = 24
else:
fps = 16
extra_model_def["fps"] =fps
multiple_submodels = "URLs2" in model_def
if vace_class:
frames_minimum, frames_steps = 17, 4
else:
frames_minimum, frames_steps = 5, 4
extra_model_def.update({
"frames_minimum" : frames_minimum,
"frames_steps" : frames_steps,
"sliding_window" : base_model_type in ["multitalk", "infinitetalk", "t2v", "t2v_2_2", "fantasy", "animate"] or test_class_i2v(base_model_type) or test_wan_5B(base_model_type) or vace_class, #"ti2v_2_2",
"multiple_submodels" : multiple_submodels,
"guidance_max_phases" : 3,
"skip_layer_guidance" : True,
"cfg_zero" : True,
"cfg_star" : True,
"adaptive_projected_guidance" : True,
"tea_cache" : not (base_model_type in ["i2v_2_2"] or test_wan_5B(base_model_type) or multiple_submodels),
"mag_cache" : True,
"keep_frames_video_guide_not_supported": base_model_type in ["infinitetalk"],
"sample_solvers":[
("unipc", "unipc"),
("euler", "euler"),
("dpm++", "dpm++"),
("flowmatch causvid", "causvid"),
("lcm + ltx", "lcm"), ]
})
if base_model_type in ["t2v", "t2v_2_2"]:
extra_model_def["guide_custom_choices"] = {
"choices":[("Use Text Prompt Only", ""),
("Video to Video guided by Text Prompt", "GUV"),
("Video to Video guided by Text Prompt and Restricted to the Area of the Video Mask", "GVA")],
"default": "",
"letters_filter": "GUVA",
"label": "Video to Video"
}
extra_model_def["mask_preprocessing"] = {
"selection":[ "", "A"],
"visible": False
}
extra_model_def["v2i_switch_supported"] = True
if base_model_type in ["infinitetalk"]:
extra_model_def["no_background_removal"] = True
extra_model_def["all_image_refs_are_background_ref"] = True
extra_model_def["guide_custom_choices"] = {
"choices":[
("Images to Video, each Reference Image will start a new shot with a new Sliding Window", "KI"),
("Sparse Video to Video, one Image will by extracted from Video for each new Sliding Window", "RUV"),
("Video to Video, amount of motion transferred depends on Denoising Strength", "GUV"),
],
"default": "KI",
"letters_filter": "RGUVKI",
"label": "Video to Video",
"scale": 3,
"show_label" : False,
}
extra_model_def["custom_video_selection"] = {
"choices":[
("Smooth Transitions", ""),
("Sharp Transitions", "0"),
],
"trigger": "",
"label": "Custom Process",
"letters_filter": "0",
"show_label" : False,
"scale": 1,
}
# extra_model_def["at_least_one_image_ref_needed"] = True
if base_model_type in ["lucy_edit"]:
extra_model_def["keep_frames_video_guide_not_supported"] = True
extra_model_def["guide_preprocessing"] = {
"selection": ["UV"],
"labels" : { "UV": "Control Video"},
"visible": False,
}
if base_model_type in ["animate"]:
extra_model_def["guide_custom_choices"] = {
"choices":[
("Animate Person in Reference Image using Motion of Whole Control Video", "PVBKI"),
("Animate Person in Reference Image using Motion of Targeted Person in Control Video", "PVBXAKI"),
("Replace Person in Control Video by Person in Ref Image", "PVBAIH#"),
("Replace Person in Control Video by Person in Ref Image. See Through Mask", "PVBAI#"),
],
"default": "PVBKI",
"letters_filter": "PVBXAKIH#",
"label": "Type of Process",
"scale": 3,
"show_label" : False,
}
extra_model_def["custom_video_selection"] = {
"choices":[
("None", ""),
("Apply Relighting", "1"),
],
"trigger": "#",
"label": "Custom Process",
"type": "checkbox",
"letters_filter": "1",
"show_label" : False,
"scale": 1,
}
extra_model_def["mask_preprocessing"] = {
"selection":[ "", "A", "XA"],
"visible": False
}
extra_model_def["video_guide_outpainting"] = [0,1]
extra_model_def["keep_frames_video_guide_not_supported"] = True
extra_model_def["extract_guide_from_window_start"] = True
extra_model_def["forced_guide_mask_inputs"] = True
extra_model_def["background_removal_label"]= "Remove Backgrounds behind People (Animate Mode Only)"
extra_model_def["background_ref_outpainted"] = False
extra_model_def["return_image_refs_tensor"] = True
extra_model_def["guide_inpaint_color"] = 0
if vace_class:
extra_model_def["guide_preprocessing"] = {
"selection": ["", "UV", "PV", "DV", "SV", "LV", "CV", "MV", "V", "PDV", "PSV", "PLV" , "DSV", "DLV", "SLV"],
"labels" : { "V": "Use Vace raw format"}
}
extra_model_def["mask_preprocessing"] = {
"selection": ["", "A", "NA", "XA", "XNA", "YA", "YNA", "WA", "WNA", "ZA", "ZNA"],
}
extra_model_def["image_ref_choices"] = {
"choices": [("None", ""),
("People / Objects", "I"),
("Landscape followed by People / Objects (if any)", "KI"),
("Positioned Frames followed by People / Objects (if any)", "FI"),
],
"letters_filter": "KFI",
}
extra_model_def["background_removal_label"]= "Remove Backgrounds behind People / Objects, keep it for Landscape or Positioned Frames"
extra_model_def["video_guide_outpainting"] = [0,1]
extra_model_def["pad_guide_video"] = True
extra_model_def["guide_inpaint_color"] = 127.5
extra_model_def["forced_guide_mask_inputs"] = True
extra_model_def["return_image_refs_tensor"] = True
extra_model_def["v2i_switch_supported"] = True
if base_model_type in ["vace_lynx_14B"]:
extra_model_def["set_video_prompt_type"]="Q"
extra_model_def["control_net_weight_alt_name"] = "Lynx"
extra_model_def["image_ref_choices"]["choices"] = [("None", ""),
("People / Objects (if any) then a Face", "I"),
("Landscape followed by People / Objects (if any) then a Face", "KI"),
("Positioned Frames followed by People / Objects (if any) then a Face", "FI")]
extra_model_def["background_removal_label"]= "Remove Backgrounds behind People / Objects, keep it for Landscape, Lynx Face or Positioned Frames"
extra_model_def["no_processing_on_last_images_refs"] = 1
if base_model_type in ["standin"]:
extra_model_def["v2i_switch_supported"] = True
extra_model_def["image_ref_choices"] = {
"choices": [
("No Reference Image", ""),
("Reference Image is a Person Face", "I"),
],
"visible": False,
"letters_filter":"I",
}
extra_model_def["one_image_ref_needed"] = True
if base_model_type in ["lynx_lite", "lynx"]:
extra_model_def["fit_into_canvas_image_refs"] = 0
extra_model_def["guide_custom_choices"] = {
"choices":[("Use Reference Image which is a Person Face", ""),
("Video to Video guided by Text Prompt & Reference Image", "GUV"),
("Video to Video on the Area of the Video Mask", "GVA")],
"default": "",
"letters_filter": "GUVA",
"label": "Video to Video",
"show_label" : False,
}
extra_model_def["mask_preprocessing"] = {
"selection":[ "", "A"],
"visible": False
}
extra_model_def["image_ref_choices"] = {
"choices": [
("No Reference Image", ""),
("Reference Image is a Person Face", "I"),
],
"visible": False,
"letters_filter":"I",
}
extra_model_def["one_image_ref_needed"] = True
extra_model_def["set_video_prompt_type"]= "Q"
extra_model_def["no_background_removal"] = True
extra_model_def["v2i_switch_supported"] = True
extra_model_def["control_net_weight_alt_name"] = "Lynx"
if base_model_type in ["phantom_1.3B", "phantom_14B"]:
extra_model_def["image_ref_choices"] = {
"choices": [("Reference Image", "I")],
"letters_filter":"I",
"visible": False,
}
if base_model_type in ["recam_1.3B"]:
extra_model_def["keep_frames_video_guide_not_supported"] = True
extra_model_def["model_modes"] = {
"choices": [
("Pan Right", 1),
("Pan Left", 2),
("Tilt Up", 3),
("Tilt Down", 4),
("Zoom In", 5),
("Zoom Out", 6),
("Translate Up (with rotation)", 7),
("Translate Down (with rotation)", 8),
("Arc Left (with rotation)", 9),
("Arc Right (with rotation)", 10),
],
"default": 1,
"label" : "Camera Movement Type"
}
extra_model_def["guide_preprocessing"] = {
"selection": ["UV"],
"labels" : { "UV": "Control Video"},
"visible" : False,
}
if vace_class or base_model_type in ["animate"]:
image_prompt_types_allowed = "TVL"
elif base_model_type in ["infinitetalk"]:
image_prompt_types_allowed = "TSVL"
elif base_model_type in ["ti2v_2_2"]:
image_prompt_types_allowed = "TSVL"
elif base_model_type in ["lucy_edit"]:
image_prompt_types_allowed = "TVL"
elif test_multitalk(base_model_type) or base_model_type in ["fantasy"]:
image_prompt_types_allowed = "SVL"
elif i2v:
image_prompt_types_allowed = "SEVL"
else:
image_prompt_types_allowed = ""
extra_model_def["image_prompt_types_allowed"] = image_prompt_types_allowed
if text_oneframe_overlap(base_model_type):
extra_model_def["sliding_window_defaults"] = { "overlap_min" : 1, "overlap_max" : 1, "overlap_step": 0, "overlap_default": 1}
# if base_model_type in ["phantom_1.3B", "phantom_14B"]:
# extra_model_def["one_image_ref_needed"] = True
return extra_model_def
@staticmethod
def get_vae_block_size(base_model_type):
return 32 if test_wan_5B(base_model_type) else 16
@staticmethod
def get_rgb_factors(base_model_type ):
from shared.RGB_factors import get_rgb_factors
if test_wan_5B(base_model_type): base_model_type = "ti2v_2_2"
latent_rgb_factors, latent_rgb_factors_bias = get_rgb_factors("wan", base_model_type)
return latent_rgb_factors, latent_rgb_factors_bias
@staticmethod
def query_model_files(computeList, base_model_type, model_filename, text_encoder_quantization):
text_encoder_filename = family_handler.get_wan_text_encoder_filename(text_encoder_quantization)
download_def = [{
"repoId" : "DeepBeepMeep/Wan2.1",
"sourceFolderList" : ["xlm-roberta-large", "umt5-xxl", "" ],
"fileList" : [ [ "models_clip_open-clip-xlm-roberta-large-vit-huge-14-bf16.safetensors", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json"], ["special_tokens_map.json", "spiece.model", "tokenizer.json", "tokenizer_config.json"] + computeList(text_encoder_filename) , ["Wan2.1_VAE.safetensors", "fantasy_proj_model.safetensors" ] + computeList(model_filename) ]
}]
if test_wan_5B(base_model_type):
download_def += [ {
"repoId" : "DeepBeepMeep/Wan2.2",
"sourceFolderList" : [""],
"fileList" : [ [ "Wan2.2_VAE.safetensors" ] ]
}]
return download_def
@staticmethod
def load_model(model_filename, model_type, base_model_type, model_def, quantizeTransformer = False, text_encoder_quantization = None, dtype = torch.bfloat16, VAE_dtype = torch.float32, mixed_precision_transformer = False, save_quantized= False, submodel_no_list = None):
from .configs import WAN_CONFIGS
if test_class_i2v(base_model_type):
cfg = WAN_CONFIGS['i2v-14B']
else:
cfg = WAN_CONFIGS['t2v-14B']
# cfg = WAN_CONFIGS['t2v-1.3B']
from . import WanAny2V
wan_model = WanAny2V(
config=cfg,
checkpoint_dir="ckpts",
model_filename=model_filename,
submodel_no_list = submodel_no_list,
model_type = model_type,
model_def = model_def,
base_model_type=base_model_type,
text_encoder_filename= family_handler.get_wan_text_encoder_filename(text_encoder_quantization),
quantizeTransformer = quantizeTransformer,
dtype = dtype,
VAE_dtype = VAE_dtype,
mixed_precision_transformer = mixed_precision_transformer,
save_quantized = save_quantized
)
pipe = {"transformer": wan_model.model, "text_encoder" : wan_model.text_encoder.model, "vae": wan_model.vae.model }
if hasattr(wan_model,"model2") and wan_model.model2 is not None:
pipe["transformer2"] = wan_model.model2
if hasattr(wan_model, "clip"):
pipe["text_encoder_2"] = wan_model.clip.model
return wan_model, pipe
@staticmethod
def fix_settings(base_model_type, settings_version, model_def, ui_defaults):
if ui_defaults.get("sample_solver", "") == "":
ui_defaults["sample_solver"] = "unipc"
if settings_version < 2.24:
if (model_def.get("multiple_submodels", False) or ui_defaults.get("switch_threshold", 0) > 0) and ui_defaults.get("guidance_phases",0)<2:
ui_defaults["guidance_phases"] = 2
if settings_version == 2.24 and ui_defaults.get("guidance_phases",0) ==2:
mult = model_def.get("loras_multipliers","")
if len(mult)> 1 and len(mult[0].split(";"))==3: ui_defaults["guidance_phases"] = 3
if settings_version < 2.27:
if base_model_type in "infinitetalk":
guidance_scale = ui_defaults.get("guidance_scale", None)
if guidance_scale == 1:
ui_defaults["audio_guidance_scale"]= 1
video_prompt_type = ui_defaults.get("video_prompt_type", "")
if "I" in video_prompt_type:
video_prompt_type = video_prompt_type.replace("KI", "0KI")
ui_defaults["video_prompt_type"] = video_prompt_type
if settings_version < 2.28:
if base_model_type in "infinitetalk":
video_prompt_type = ui_defaults.get("video_prompt_type", "")
if "U" in video_prompt_type:
video_prompt_type = video_prompt_type.replace("U", "RU")
ui_defaults["video_prompt_type"] = video_prompt_type
if settings_version < 2.31:
if base_model_type in ["recam_1.3B"]:
video_prompt_type = ui_defaults.get("video_prompt_type", "")
if not "V" in video_prompt_type:
video_prompt_type += "UV"
ui_defaults["video_prompt_type"] = video_prompt_type
ui_defaults["image_prompt_type"] = ""
if text_oneframe_overlap(base_model_type):
ui_defaults["sliding_window_overlap"] = 1
if settings_version < 2.32:
image_prompt_type = ui_defaults.get("image_prompt_type", "")
if test_class_i2v(base_model_type) and len(image_prompt_type) == 0 and "S" in model_def.get("image_prompt_types_allowed",""):
ui_defaults["image_prompt_type"] = "S"
if settings_version < 2.37:
if base_model_type in ["animate"]:
video_prompt_type = ui_defaults.get("video_prompt_type", "")
if "1" in video_prompt_type:
video_prompt_type = video_prompt_type.replace("1", "#1")
ui_defaults["video_prompt_type"] = video_prompt_type
if settings_version < 2.38:
if base_model_type in ["infinitetalk"]:
video_prompt_type = ui_defaults.get("video_prompt_type", "")
if "Q" in video_prompt_type:
video_prompt_type = video_prompt_type.replace("Q", "0")
ui_defaults["video_prompt_type"] = video_prompt_type
if settings_version < 2.39:
if base_model_type in ["fantasy"]:
audio_prompt_type = ui_defaults.get("audio_prompt_type", "")
if not "A" in audio_prompt_type:
audio_prompt_type += "A"
ui_defaults["audio_prompt_type"] = audio_prompt_type
@staticmethod
def update_default_settings(base_model_type, model_def, ui_defaults):
ui_defaults.update({
"sample_solver": "unipc",
})
if test_class_i2v(base_model_type) and "S" in model_def["image_prompt_types_allowed"]:
ui_defaults["image_prompt_type"] = "S"
if base_model_type in ["fantasy"]:
ui_defaults.update({
"audio_guidance_scale": 5.0,
"sliding_window_overlap" : 1,
"audio_prompt_type": "A",
})
elif base_model_type in ["multitalk"]:
ui_defaults.update({
"guidance_scale": 5.0,
"flow_shift": 7, # 11 for 720p
"sliding_window_discard_last_frames" : 4,
"sample_solver" : "euler",
"audio_prompt_type": "A",
"adaptive_switch" : 1,
})
elif base_model_type in ["infinitetalk"]:
ui_defaults.update({
"guidance_scale": 5.0,
"flow_shift": 7, # 11 for 720p
"sliding_window_overlap" : 9,
"sliding_window_size": 81,
"sample_solver" : "euler",
"video_prompt_type": "0KI",
"remove_background_images_ref" : 0,
"adaptive_switch" : 1,
})
elif base_model_type in ["standin"]:
ui_defaults.update({
"guidance_scale": 5.0,
"flow_shift": 7, # 11 for 720p
"sliding_window_overlap" : 9,
"video_prompt_type": "I",
"remove_background_images_ref" : 1 ,
})
elif base_model_type in ["lynx_lite", "lynx"]:
ui_defaults.update({
"guidance_scale": 5.0,
"flow_shift": 7, # 11 for 720p
"sliding_window_overlap" : 9,
"video_prompt_type": "I",
"denoising_strength": 0.8,
"remove_background_images_ref" : 0,
})
elif base_model_type in ["phantom_1.3B", "phantom_14B"]:
ui_defaults.update({
"guidance_scale": 7.5,
"flow_shift": 5,
"remove_background_images_ref": 1,
"video_prompt_type": "I",
# "resolution": "1280x720"
})
elif base_model_type in ["vace_14B", "vace_multitalk_14B"]:
ui_defaults.update({
"sliding_window_discard_last_frames": 0,
})
elif base_model_type in ["ti2v_2_2"]:
ui_defaults.update({
"image_prompt_type": "T",
})
if base_model_type in ["recam_1.3B", "lucy_edit"]:
ui_defaults.update({
"video_prompt_type": "UV",
})
elif base_model_type in ["animate"]:
ui_defaults.update({
"video_prompt_type": "PVBKI",
"mask_expand": 20,
"audio_prompt_type": "R",
})
if text_oneframe_overlap(base_model_type):
ui_defaults["sliding_window_overlap"] = 1
ui_defaults["color_correction_strength"]= 0
if test_multitalk(base_model_type):
ui_defaults["audio_guidance_scale"] = 4
if model_def.get("multiple_submodels", False):
ui_defaults["guidance_phases"] = 2
@staticmethod
def validate_generative_settings(base_model_type, model_def, inputs):
if base_model_type in ["infinitetalk"]:
video_source = inputs["video_source"]
image_refs = inputs["image_refs"]
video_prompt_type = inputs["video_prompt_type"]
image_prompt_type = inputs["image_prompt_type"]
if ("V" in image_prompt_type or "L" in image_prompt_type) and image_refs is None:
video_prompt_type = video_prompt_type.replace("I", "").replace("K","")
inputs["video_prompt_type"] = video_prompt_type
if base_model_type in ["vace_standin_14B", "vace_lynx_14B"]:
image_refs = inputs["image_refs"]
video_prompt_type = inputs["video_prompt_type"]
if image_refs is not None and len(image_refs) == 1 and "K" in video_prompt_type:
gr.Info("Warning, Ref Image that contains the Face to transfer is Missing: if 'Landscape and then People or Objects' is selected beside the Landscape Image Ref there should be another Image Ref that contains a Face.")
|